首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3740篇
  免费   298篇
  国内免费   4篇
  2023年   17篇
  2022年   38篇
  2021年   73篇
  2020年   43篇
  2019年   43篇
  2018年   55篇
  2017年   44篇
  2016年   86篇
  2015年   140篇
  2014年   173篇
  2013年   177篇
  2012年   289篇
  2011年   318篇
  2010年   206篇
  2009年   178篇
  2008年   220篇
  2007年   226篇
  2006年   204篇
  2005年   208篇
  2004年   182篇
  2003年   172篇
  2002年   181篇
  2001年   43篇
  2000年   47篇
  1999年   50篇
  1998年   52篇
  1997年   28篇
  1996年   23篇
  1995年   27篇
  1994年   28篇
  1993年   22篇
  1992年   33篇
  1991年   32篇
  1990年   31篇
  1989年   26篇
  1988年   45篇
  1987年   21篇
  1986年   17篇
  1985年   27篇
  1984年   20篇
  1983年   13篇
  1982年   18篇
  1981年   18篇
  1979年   17篇
  1978年   16篇
  1977年   14篇
  1976年   12篇
  1975年   11篇
  1974年   13篇
  1973年   19篇
排序方式: 共有4042条查询结果,搜索用时 15 毫秒
81.
Microbiota niches have space and/or nutrient restrictions, which has led to the coevolution of cooperation, specialisation, and competition within the population. Different animal and environmental niches contain defined resident microbiota that tend to be stable over time and offer protection against undesired intruders. Yet fluxes can occur, which alter the composition of a bacterial population. In humans, the microbiota are now considered a key contributor to maintenance of health and homeostasis, and its alteration leads to dysbiosis. The bacterial type VI secretion system (T6SS) transports proteins into the environment, directly into host cells or can function as an antibacterial weapon by killing surrounding competitors. Upon contact with neighbouring cells, the T6SS fires, delivering a payload of effector proteins. In the absence of an immunity protein, this results in growth inhibition or death of prey leading to a competitive advantage for the attacker. It is becoming apparent that the T6SS has a role in modulating and shaping the microbiota at multiple levels, which is the focus of this review. Discussed here is the T6SS, its role in competition, key examples of its effect upon the microbiota, and future avenues of research.  相似文献   
82.
Hydrodynamic limb vein injection is an in vivo locoregional gene delivery method. It consists of administrating a large volume of solution containing nucleic acid constructs in a limb with both blood inflow and outflow temporarily blocked using a tourniquet. The fast, high pressure delivery allows the musculature of the whole limb to be reached. The skeletal muscle is a tissue of choice for a variety of gene transfer applications, including gene therapy for Duchenne muscular dystrophy or other myopathies, as well as for the production of antibodies or other proteins with broad therapeutic effects. Hydrodynamic limb vein delivery has been evaluated with success in a large range of animal models. It has also proven to be safe and well‐tolerated in muscular dystrophy patients, thus supporting its translation to the clinic. However, some possible limitations may occur at different steps of the delivery process. Here, we have highlighted the interests, bottlenecks and potential improvements that could further optimize non‐viral gene transfer following hydrodynamic limb vein injection.  相似文献   
83.
If two related plant species hybridize, their genomes may be combined and duplicated within a single nucleus, thereby forming an allotetraploid. How the emerging plant balances two co‐evolved genomes is still a matter of ongoing research. Here, we focus on satellite DNA (satDNA), the fastest turn‐over sequence class in eukaryotes, aiming to trace its emergence, amplification, and loss during plant speciation and allopolyploidization. As a model, we used Chenopodium quinoa Willd. (quinoa), an allopolyploid crop with 2n = 4x = 36 chromosomes. Quinoa originated by hybridization of an unknown female American Chenopodium diploid (AA genome) with an unknown male Old World diploid species (BB genome), dating back 3.3–6.3 million years. Applying short read clustering to quinoa (AABB), C. pallidicaule (AA), and C. suecicum (BB) whole genome shotgun sequences, we classified their repetitive fractions, and identified and characterized seven satDNA families, together with the 5S rDNA model repeat. We show unequal satDNA amplification (two families) and exclusive occurrence (four families) in the AA and BB diploids by read mapping as well as Southern, genomic, and fluorescent in situ hybridization. Whereas the satDNA distributions support C. suecicum as possible parental species, we were able to exclude C. pallidicaule as progenitor due to unique repeat profiles. Using quinoa long reads and scaffolds, we detected only limited evidence of intergenomic homogenization of satDNA after allopolyploidization, but were able to exclude dispersal of 5S rRNA genes between subgenomes. Our results exemplify the complex route of tandem repeat evolution through Chenopodium speciation and allopolyploidization, and may provide sequence targets for the identification of quinoa's progenitors.  相似文献   
84.
Cutmore  S. C.  Yong  R. Q.-Y.  Reimer  J. D.  Shirakashi  S.  Nolan  M. J.  Cribb  T. H. 《Systematic parasitology》2021,98(5-6):641-664

Ankistromeces Nolan & Cribb, 2004 and Phthinomita Nolan & Cribb, 2006 are sister genera of threadlike blood flukes (Trematoda: Aporocotylidae) infecting teleost fishes of the tropical Indo-west Pacific. Here, we report new collections of these genera from Australia, Indonesia, and Japan. A new species of Ankistromeces, Ankistromeces kawamurai n. sp., is described from Siganus spinus (Linnaeus) off Okinawa, Japan, and a new species of Phthinomita, Phthinomita abdita n. sp., from Choerodon cephalotes (Castelnau), in Moreton Bay, Australia; the new species are morphologically cryptic within their respective genera and are delineated by molecular and ecological data. Ankistromeces olsoni Nolan & Cribb, 2006 is reported from Siganus fuscescens (Houttuyn) off Heron Island (southern Great Barrier Reef), Lizard Island (northern Great Barrier Reef), and Okinawa and Wakayama Prefectures, Japan and from Siganus spinus (Linnaeus) from off Bali, Indonesia. Ankistromeces mariae Nolan & Cribb, 2004 is re-reported from the type-host, Meuschenia freycineti (Quoy & Gaimard), from a new location, Gypsy Bay, Tasmania. Phthinomita poulini Nolan & Cribb, 2006 is re-reported from its type-locality, Lizard Island, from a range of mullids, including five new host species, and its range is extended to include Moreton Bay. Phthinomita symplocos Nolan & Cribb, 2006 is reported from Bali and P. hallae Nolan & Cribb, 2006, P. jonesi Nolan & Cribb, 2006, P. littlewoodi Nolan & Cribb, 2006, and P. munozae Nolan & Cribb, 2006 are each re-reported from their type-host and type-localities. New cox1 mtDNA data were generated for all known species of these two genera from new and archival material. Analyses of these data enabled an evaluation of all known Phthinomita species; P. robertsthomsoni Nolan & Cribb, 2006 is synonymised with P. adlardi Nolan & Cribb, 2006, and P. brooksi Nolan & Cribb, 2006 is synonymised with P. sasali Nolan & Cribb, 2006. We highlight the failure of ITS2 data to delineate closely related aporocotylid species. In contrast, cox1 sequence data are proving reliable and effective in this context and we recommend their incorporation in future studies of blood fluke taxonomy.

  相似文献   
85.
Journal of Applied Phycology - Seaweed extracts are agricultural biostimulants that have been shown to increase the productivity of many crops. The aim of this study was to determine the effect of...  相似文献   
86.
87.
88.
More than 68 billion chickens were produced globally in 2018, emphasising their major contribution to the production of protein for human consumption and the importance of their pathogens. Protozoan Eimeria spp. are the most economically significant parasites of chickens, incurring global costs of more than UK £10.4 billion per annum. Seven Eimeria spp. have long been recognised to infect chickens, with three additional cryptic operational taxonomic units (OTUs) first described more than 10 years ago. As the world’s farmers attempt to reduce reliance on routine use of antimicrobials in livestock production, replacing drugs that target a wide range of microbes with precise species- and sometimes strain-specific vaccines, the breakthrough of cryptic genetic types can pose serious problems. Consideration of biological characteristics including oocyst morphology, pathology caused during infection and pre-patent periods, combined with gene-coding sequences predicted from draft genome sequence assemblies, suggest that all three of these cryptic Eimeria OTUs possess sufficient genetic and biological diversity to be considered as new and distinct species. The ability of these OTUs to compromise chicken bodyweight gain and escape immunity induced by current commercially available anticoccidial vaccines indicates that they could pose a notable threat to chicken health, welfare, and productivity. We suggest the names Eimeria lata n. sp., Eimeria nagambie n. sp. and Eimeria zaria n. sp. for OTUs x, y and z, respectively, reflecting their appearance (x) or the origins of the first isolates of these novel species (y, z).  相似文献   
89.
Meiosis creates genetic diversity by recombination and segregation of chromosomes. The synaptonemal complex assembles during meiotic prophase I and assists faithful exchanges between homologous chromosomes, but how its assembly/disassembly is regulated remains to be understood. Here, we report how two major posttranslational modifications, phosphorylation and ubiquitination, cooperate to promote synaptonemal complex assembly. We found that the ubiquitin ligase complex SCF is important for assembly and maintenance of the synaptonemal complex in Drosophila female meiosis. This function of SCF is mediated by two substrate-recognizing F-box proteins, Slmb/βTrcp and Fbxo42. SCF-Fbxo42 down-regulates the phosphatase subunit PP2A-B56, which is important for synaptonemal complex assembly and maintenance.  相似文献   
90.

Otitis media is a common childhood infection, frequently requiring antibiotics. With high rates of antibiotic prescribing and increasing antibiotic resistance, new strategies in otitis media prevention and treatment are needed. The aim of this study was to assess the in vitro inhibitory activity Streptococcus salivarius BLIS K12 against otitis media pathogens. Efficacy of the bacteriocin activity of S. salivarius BLIS K12 against the otitis media isolates was assessed using the deferred antagonism test. Overall, 48% of pathogenic isolates exhibited some growth inhibition by S. salivarius BLIS K12. S. salivarius BLIS K12 can inhibit the in vitro growth of the most common pathogens.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号