首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   5篇
  2023年   1篇
  2022年   3篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   4篇
  2016年   1篇
  2015年   3篇
  2014年   4篇
  2013年   6篇
  2012年   3篇
  2010年   2篇
  2009年   5篇
  2008年   5篇
  2007年   4篇
  2006年   2篇
  2005年   1篇
  2004年   5篇
  2003年   2篇
  2002年   2篇
  1999年   2篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
排序方式: 共有62条查询结果,搜索用时 15 毫秒
31.
32.
The origin and evolution of bacterial introns are still controversial issues. Here we present data on the distribution and evolution of a recently discovered divergent tRNA(Leu)(UAA) intron. The intron shows a higher sequence affiliation with introns in tRNA(Ile)(CAU) and tRNA(Arg)(CCU) genes in alpha- and beta-proteobacteria, respectively, than with other cyanobacterial tRNA(Leu)(UAA) group I introns. The divergent tRNA(Leu)(UAA) intron is sporadically distributed both within the Nostoc and the Microcystis radiations. The complete tRNA gene, including flanking regions and intron from Microcystis aeruginosa strain NIVA-CYA 57, was sequenced in order to elucidate the evolutionary pattern of this intron. Phylogenetic reconstruction gave statistical evidence for different phylogenies for the intron and exon sequences, supporting an evolutionary model involving horizontal intron transfer. The distribution of the tRNA gene, its flanking regions, and the introns were addressed by Southern hybridization and PCR amplification. The tRNA gene, including the flanking regions, were absent in the intronless stains but present in the intron-containing strains. This suggests that the sporadic distribution of this intron within the Microcystis genus cannot be attributed to intron mobility but rather to an instability of the entire tRNA(Leu)(UAA) intron-containing genome region. Taken together, the complete data set for the evolution of this intron can best be explained by a model involving a nested evolution of the intron, i.e., wherein the intron has been transferred horizontally (probably through a single or a few events) to a tRNA(Leu)(UAA) gene which is located within a unstable genome region.  相似文献   
33.
34.
The isolation and characterization of a virus (designated EhV) that infects the marine coccolithophorid Emiliania huxleyi (Lohmann) Hay & Mohler are described. Three independent clones of EhV were isolated from Norwegian coastal waters in years 1999 and 2000. EhV is a double‐stranded DNA‐containing virus with a genome size of ~415 kilo‐base pairs. The viral particle is an icosahedron with a diameter of 160–180 nm. The virus particle contains at least nine proteins ranging from 10 to 140 kDa; the major capsid protein weighs ~54 kDa. EhV has a latent period of 12–14 h and a burst size of 400–1000 (mean, 620) viral particles per cell. A phylogenetic tree based on DNA polymerase amino acid sequences indicates EhV should be assigned to the Phycodnaviridae virus family and that the virus is most closely related to viruses that infect Micromonas pusilla and certain Chlorella species.  相似文献   
35.
Ligand binding causes the EGF receptor (EGFR) to become ubiquitinated by Cbl upon association with the adaptor protein Grb2. We have investigated the role of ubiquitin and Grb2 in ligand-induced endocytosis of the EGFR. Incubation of cells with EGF on ice caused translocation of Grb2 and Cbl from the cytosol to the rim of coated pits. Grb2 with point mutations in both SH3 domains inhibited recruitment of the EGFR to clathrin-coated pits, in a Ras-independent manner. On overexpression of the Cbl-binding protein Sprouty, ubiquitination of the EGFR was inhibited, the EGFR was recruited only to the rim of coated pits, and endocytosis of the EGFR was inhibited. Conjugation-defective ubiquitin similarly inhibited recruitment of EGF-EGFR to clathrin-coated pits. Even though this does not prove that cargo must be ubiquitinated, this indicates the importance of interaction of ubiquitinated protein(s) with proteins harboring ubiquitin-interacting domains. We propose that Grb2 mediates transient anchoring of the EGFR to an Eps15-containing molecular complex at the rim of coated pits and that Cbl-induced ubiquitination of the EGFR allows relocation of EGFR from the rim to the center of clathrin-coated pits.  相似文献   
36.
Disordered eating and eating disorders are of great concern due to their associations with physical and mental health risks. Even if adolescence has been identified as the most vulnerable time for developing disordered eating, few studies have used a broad spectrum of criteria to investigate the prevalence of disordered eating among high school students of both genders, in different programs of study, nor assessed correlates of disordered eating among this important target group. The purposes of this study were therefore to investigate the prevalence and correlates of disordered eating among both male and female high school students in sport-, general and vocational programs. A comprehensive questionnaire was completed by 2,451 students (98.7%), aged 15–17 years. The total prevalence of disordered eating was 54.9%, with 64.3% among girls and 45.0% among boys (p<0.001). The highest prevalence of disordered eating was found among vocational students (60.7%), followed by students in general programs (49.8%) and sport students (38.3%) (p<0.001). Female gender, school program (vocational and general), overweight/obesity and weight regulation were positively associated with disordered eating. The high prevalence indicates the importance of tailored prevention efforts directed at high school students, particularly in vocational programs. Furthermore, a smaller girls–boys ratio than expected indicates that the efforts to identify and manage disordered eating among high school students should include both genders.  相似文献   
37.
Bacillus methanolicus can utilize methanol as its sole carbon and energy source, and the scientific interest in this thermotolerant bacterium has focused largely on exploring its potential as a biocatalyst for the conversion of methanol into L-lysine and L-glutamate. We present here the genome sequences of the important B. methanolicus model strain MGA3 (ATCC 53907) and the alternative wild-type strain PB1 (NCIMB13113). The physiological diversity of these two strains was demonstrated by a comparative fed-batch methanol cultivation displaying highly different methanol consumption and respiration profiles, as well as major differences in their L-glutamate production levels (406 mmol liter(-1) and 11 mmol liter(-1), respectively). Both genomes are small (ca 3.4 Mbp) compared to those of other related bacilli, and MGA3 has two plasmids (pBM19 and pBM69), while PB1 has only one (pBM20). In particular, we focus here on genes representing biochemical pathways for methanol oxidation and concomitant formaldehyde assimilation and dissimilation, the important phosphoenol pyruvate/pyruvate anaplerotic node, the tricarboxylic acid cycle including the glyoxylate pathway, and the biosynthetic pathways for L-lysine and L-glutamate. Several unique findings were made, including the discovery of three different methanol dehydrogenase genes in each of the two B. methanolicus strains, and the genomic analyses were accompanied by gene expression studies. Our results provide new insight into a number of peculiar physiological and metabolic traits of B. methanolicus and open up possibilities for system-level metabolic engineering of this bacterium for the production of amino acids and other useful compounds from methanol.  相似文献   
38.
39.
Decapod crustaceans exhibit considerable variation in fertilisation strategies, ranging from pervasive single paternity to the near-ubiquitous presence of multiple paternity, and such knowledge of mating systems and behaviour are required for the informed management of commercially-exploited marine fisheries. We used genetic markers to assess the paternity of individual broods in the European lobster, Homarus gammarus, a species for which paternity structure is unknown. Using 13 multiplexed microsatellite loci, three of which are newly described in this study, we genotyped 10 eggs from each of 34 females collected from an Atlantic peninsula in the south-western United Kingdom. Single reconstructed paternal genotypes explained all observed progeny genotypes in each of the 34 egg clutches, and each clutch was fertilised by a different male. Simulations indicated that the probability of detecting multiple paternity was in excess of 95% if secondary sires account for at least a quarter of the brood, and in excess of 99% where additional sire success was approximately equal. Our results show that multiple paternal fertilisations are either absent, unusual, or highly skewed in favour of a single male among H. gammarus in this area. Potential mechanisms upholding single paternal fertilisation are discussed, along with the prospective utility of parentage assignments in evaluations of hatchery stocking and other fishery conservation approaches in light of this finding.  相似文献   
40.
Alginates are polysaccharides composed of 1-4-linked β-d-mannuronic acid and α-l-guluronic acid. The polymer can be degraded by alginate lyases, which cleave the polysaccharide using a β-elimination reaction. Two such lyases have previously been identified in the soil bacterium Azotobacter vinelandii, as follows: the periplasmic AlgL and the secreted bifunctional mannuronan C-5 epimerase and alginate lyase AlgE7. In this work, we describe the properties of three new lyases from this bacterium, AlyA1, AlyA2, and AlyA3, all of which belong to the PL7 family of polysaccharide lyases. One of the enzymes, AlyA3, also contains a C-terminal module similar to those of proteins secreted by a type I secretion system, and its activity is stimulated by Ca2+. All three enzymes preferably cleave the bond between guluronic acid and mannuronic acid, resulting in a guluronic acid residue at the new reducing end, but AlyA3 also degrades the other three possible bonds in alginate. Strains containing interrupted versions of alyA1, alyA3, and algE7 were constructed, and their phenotypes were analyzed. Genetically pure alyA2 mutants were not obtained, suggesting that this gene product may be important for the bacterium during vegetative growth. After centrifugation, cultures from the algE7 mutants form a large pellet containing alginate, indicating that AlgE7 is involved in the release of alginate from the cells. Upon encountering adverse growth conditions, A. vinelandii will form a resting stage called cyst. Alginate is a necessary part of the protective cyst coat, and we show here that strains lacking alyA3 germinate poorly compared to wild-type cells.Azotobacter vinelandii is a nitrogen-fixing bacterium found in soil. A. vinelandii and several species belonging to the related genus Pseudomonas have been found to produce the polymer alginate. This linear, extracellular polysaccharide is composed of 1-4-linked β-d-mannuronic acid (M) and its C-5 epimer α-l-guluronic acid (G) (35), and the relative amount and distribution of these two residues vary according to the species and growth conditions. Some of the M residues in bacterial alginates may be O acetylated at C-2, C-3, or both C-2 and C-3 (34).Alginate is first synthesized as mannuronan, and the G residues are introduced by mannuronan C-5 epimerases. All genome-sequenced alginate-producing bacteria have been found to encode a periplasmic epimerase, AlgG, that epimerizes some of the M residues in the polymer into G residues (40). AlgG seems to be unable to epimerize an M residue next to a preexisting G residue in vivo. A. vinelandii also encodes a family of secreted mannuronan C-5 epimerases (AlgE1-7) (40), some of which are able to form stretches of consecutive G residues (G blocks). Alginates containing G blocks can be cross-linked by divalent cations and thereby form gels (35).Polysaccharide lyases (EC 4.2.2.-) are a group of enzymes which cleave the polymer chains via a β-elimination mechanism, resulting in the formation of a double bond at the newly formed nonreducing end. For alginate lyases, 4-deoxy-l-erythro-hex-4-enepyranosyluronate (denoted as Δ) is formed at the nonreducing end. Several such lyases have been purified from both alginate-producing and alginate-degrading organisms, as reviewed by Wong et al. (42). When they are classified according to primary structure, the alginate lyases belong to the polysaccharide-degrading enzyme families PL5, PL6, PL7, PL14, PL17, and PL18 (http://www.cazy.org). Alginate molecules may contain four different bonds (M-M, M-G, G-M, and G-G), and alginate lyases may therefore be classified according to their preferred substrate specificities. It is now possible to obtain pure mannuronan and nearly pure (MG)n and G blocks (17, 19, 20), and this allows for an improved assessment of the substrate specificities of the alginate lyases.The following two alginate lyases have been characterized in A. vinelandii: the periplasmic AlgL that belongs to the PL5 family (15) and the extracellular bifunctional mannuronan C-5 epimerase and alginate lyase AlgE7 (36, 37). AlgL is encoded by the alginate biosynthesis operon, similar to what has been found in all characterized alginate-producing bacteria. This enzyme cleaves M-M and M-G bonds (15), while AlgE7 preferably degrades G-MM and G-GM bonds (37). The latter enzyme is also able to introduce G residues in the alginate, thus creating the preferred substrate for the lyase.When A. vinelandii experiences a lack of nutrients, it will develop into a dormant cell designated cyst (30). The cell is then protected against desiccation by a multilayered coat, of which gel-forming alginate is a necessary part. Resuspension of cysts in a medium containing glucose leads to a germination process in which vegetative cells eventually escape from the cyst coat. It has been proposed that an alginate lyase may be involved in the rupture of the coat (43). AlgL is dispensable for germination (38), while the biological function of AlgE7 is unknown. In this report, we use the available draft genome sequence of A. vinelandii to identify three additional putative lyases and evaluate their and AlgE7''s role in growth, encystment, and germination of the bacterium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号