首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1374篇
  免费   82篇
  国内免费   1篇
  1457篇
  2023年   12篇
  2022年   20篇
  2021年   59篇
  2020年   43篇
  2019年   31篇
  2018年   41篇
  2017年   29篇
  2016年   43篇
  2015年   63篇
  2014年   76篇
  2013年   108篇
  2012年   114篇
  2011年   125篇
  2010年   71篇
  2009年   58篇
  2008年   76篇
  2007年   68篇
  2006年   75篇
  2005年   63篇
  2004年   48篇
  2003年   41篇
  2002年   39篇
  2001年   12篇
  2000年   8篇
  1999年   9篇
  1998年   10篇
  1997年   9篇
  1996年   9篇
  1995年   2篇
  1994年   5篇
  1993年   8篇
  1992年   8篇
  1991年   2篇
  1990年   5篇
  1989年   3篇
  1988年   6篇
  1987年   2篇
  1986年   7篇
  1985年   6篇
  1984年   5篇
  1983年   4篇
  1982年   3篇
  1980年   3篇
  1979年   4篇
  1978年   6篇
  1977年   3篇
  1974年   6篇
  1973年   3篇
  1965年   1篇
  1928年   1篇
排序方式: 共有1457条查询结果,搜索用时 15 毫秒
991.
Prion diseases are fatal neurodegenerative disorders causing motor dysfunctions, dementia and neuropathological changes such as spongiosis, astroglyosis and neuronal loss. The chain of events leading to the clinical disease and the role of distinct brain areas are still poorly understood. The role of nervous system integrity and axonal properties in prion pathology are still elusive. There is no evidence of both the functional axonal impairments in vivo and their connection with prion disease. We studied the functional axonal impairments in motor neurons at the onset of clinical prion disease using the combination of tracing as a functional assay for axonal transport with immunohistochemistry experiments. Well-established and novel confocal and ultramicroscopy techniques were used to image and quantify labeled neurons. Despite profound differences in the incubation times, 30% to 45% of neurons in the red nucleus of different mouse lines showed axonal transport impairments at the disease onset bilaterally after intracerebral prion inoculation and unilaterally—after inoculation into the right sciatic nerve. Up to 94% of motor cortex neurons also demonstrated transport defects upon analysis by alternative imaging methods. Our data connect axonal transport impairments with disease symptoms for different prion strains and inoculation routes and establish further insight on the development of prion pathology in vivo. The alterations in localization of the proteins involved in the retrograde axonal transport allow us to propose a mechanism of transport disruption, which involves Rab7-mediated cargo attachment to the dynein-dynactin pathway. These findings suggest novel targets for therapeutic and diagnostic approaches in the early stages of prion disease.  相似文献   
992.
993.
The goal of our study was to assess the monoaminergic changes in locus coeruleus (LC) and dorsal raphe nucleus (DRN) following noradrenaline (NA) depletion. Seven days after a single N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) intraperitoneal administration in mice, we observed a decrease of NA in both the LC and DRN, as well as in prefrontal cortex (PFC) and hippocampus (HIPP). Moreover, an increase of serotonin (5-HT) and 5-hydroxyindolacetic acid (5-HIAA) was detected at LC level, while no change was found in DRN. DSP-4 also caused a significant decrease of dopamine (DA) tissue content in HIPP and DRN, without affecting the LC and the PFC. A decrease of DA metabolite, homovanillic acid (HVA), was found in the DRN of NA-depleted mice. These results highlight that the neurotoxic action of DSP-4 is not restricted to LC terminal projections but also involves NA depletion at the cell body level, where it is paralleled by adaptive changes in both serotonergic and dopaminergic systems. T. Cassano and S. Gaetani have contributed equally to the present study.  相似文献   
994.
Glycine oxidase (GO) from Bacillus subtilis is a homotetrameric flavoprotein oxidase that catalyzes the oxidation of the amine functional group of sarcosine or glycine (and some d-amino acids) to yield the corresponding keto acids, ammonia/amine and H2O2. It shows optima at pH 7–8 for stability and pH 9–10 for activity, depending on the substrate. The tetrameric oligomeric state of the holoenzyme is not affected by pH in the 6.5–10 range. Free GO forms the anionic red semiquinone upon photoreduction. This species is thermodynamically stable, as indicated by the large separation of the two single-electron reduction potentials (ΔE ≥ 290 mV). The first potential is pH independent, while the second is dependent. The midpoint reduction potential exhibits a −23.4 mV/pH unit slope, which is consistent with an overall two-electrons/one-proton transfer in the reduction to yield anionic reduced flavin. In the presence of glycolate (a substrate analogue) and at pH 7.5 the potential for the semiquinone-reduced enzyme couple is shifted positively by ∼160 mV: this favors a two-electron transfer compared to the free enzyme. Binding of glycolate and sulfite is also affected by pH, showing dependencies that reflect the ionization of an active site residue with a pKa ≈ 8.0. These results highlight substantial differences between GO and related flavoenzymes. This knowledge will facilitate biotechnological use of GO, e.g. as an innovative tool for the in vivo detection of the neurotransmitter glycine.  相似文献   
995.
The micronucleus and nuclear abnormalities assays have been used increasingly to evaluate genotoxicity of many compounds in polluted aquatic ecossystems. The aim of this study is to verify the efficiency of the micronucleus assay and nuclear abnormality assay in field and laboratory work, when using erythrocytes of the tropical marine fish Bathygobius soporator as genotoxicity biomarkers. Gill peripheral blood samples were obtained from specimens of Bathygobius soporator. In order to investigate the frequencies of micronuclei and to assess the sensitivity of species, the results were compared with samples taken at the reference site and maintained in the laboratory, and fish treated with cyclophosphamide. The micronucleus assay was efficient in demonstrating field pollution and reproducing results in the labotatory. There were significant higher frequencies of micronuclei in two sites subject to discharge of urban and industrial effluents. The nuclear abnormality assay did not appear to be an efficient tool for genotoxicity evaluation when compared with field samples taken at a reference site in laboratory, with a positive control.  相似文献   
996.
A cytochrome P450 (P450) enzyme in porcine liver that catalyzed the phenol-coupling reaction of the substrate (R)-reticuline to salutaridine was previously purified to homogeneity (Amann, T., Roos, P. H., Huh, H., and Zenk, M. H. (1995) Heterocycles 40, 425–440). This reaction was found to be catalyzed by human P450s 2D6 and 3A4 in the presence of (R)-reticuline and NADPH to yield not a single product, but rather (−)-isoboldine, (−)-corytuberine, (+)-pallidine, and salutaridine, the para-ortho coupled established precursor of morphine in the poppy plant and most likely also in mammals. (S)-Reticuline, a substrate of both P450 enzymes, yielded the phenol-coupled alkaloids (+)-isoboldine, (+)-corytuberine, (−)-pallidine, and sinoacutine; none of these serve as a morphine precursor. Catalytic efficiencies were similar for P450 2D6 and P450 3A4 in the presence of cytochrome b5 with (R)-reticuline as substrate. The mechanism of phenol coupling is not yet established; however, we favor a single cycle of iron oxidation to yield salutaridine and the three other alkaloids from (R)-reticuline. The total yield of salutaridine formed can supply the 10 nm concentration of morphine found in human neuroblastoma cell cultures and in brain tissues of mice.Cytochrome P450 (P450)2 enzymes catalyze the most versatile chemical reactions in nature (1). There is, however, a discrepancy between the plant and the animal kingdoms with regard to the sheer number of these biocatalysts. Whereas in a single model plant, Arabidopsis thaliana, there are to date 273 P450 proteins, in the human genome, only 57 of these proteins are present. Whereas plants and animals share a multitude of highly regio- and stereospecific O-demethylation reactions, more complex reactions such as phenol coupling are much more abundant in plants than in animals, especially in the alkaloid field (211). The proposal of Barton and Cohen (12) correlated the structure of specific plant alkaloids in terms of this reaction mechanism and gave mechanistic proposals of how these phenol-coupled products may possibly be biosynthesized in nature. The oxidation of phenols by one-electron transfer affords radicals, which, by radical pairing, form new C-C or C-O bonds either by intra- or intermolecular coupling. The first two examples that unequivocally demonstrated the formation of C-C and C-O bonds in a stereo- and regioselective manner in plant metabolism are catalyzed by specific P450-linked microsomal-bound plant enzymes (13). One of these enzymes was salutaridine synthase from Papaver somniferum (opium poppy) (14). This synthase catalyzes the intramolecular formation of the critical C12-C13 carbon bridge and is a key enzyme in morphine biosynthesis.The groups of Goldstein (15) and Spector (16) have published a number of reports over the past 25 years claiming that mammals are capable of synthesizing de novo traces of endogenous morphine. However, no convincing experimental data have been presented regarding the enzymes. Phenol-coupling reactions in mammals are extremely rare, and the only example described thus far is the formation of thyroxine, by radical pairing, in humans. If the key step of morphine synthesis, the formation of phenol-coupled salutaridine from (R)-reticuline, occurs in mammals then in analogy to plants, a P450 enzyme must be present (in mammals) to catalyze this reaction. In 1987, the first experiments were conducted in an attempt to discover the reaction by supplying uniformly labeled racemic [3H]reticuline in the presence of rat microsomes and NADPH to examine whether [3H]salutaridine can be formed under these conditions (15). A radioactive compound was formed in 1% yield and assumed to be the phenol-coupled product salutaridine. We later repeated this experiment using (R)-[N-14CH3]reticuline and NADPH-fortified microsomes from pig, rat, cow, and sheep. We observed the formation of [N-14CH3]salutaridine with the correct stereochemistry at carbon 9 (17). The enzyme from porcine liver was subsequently purified to homogeneity and the reaction product was characterized by mass spectrometry and physical parameters to be a product of a P450 enzyme, which we provisionally named “salutaridine synthase” (18). The aim of this report is the identification of the homogenous porcine P450 enzyme, its equivalent in humans, and the mechanism of the phenol-coupling reaction in the formation of precursors of morphine.  相似文献   
997.
Corticotropin-releasing hormone (CRH), a potent neuropeptide, is produced by the placenta of anthropoid primates. No other mammals, including prosimian primates, are known to produce placental CRH. In humans, placental CRH appears to play an important role in the progression of pregnancy to parturition. Maternal circulating CRH begins to rise early in pregnancy and increases until parturition. Gorillas and chimpanzees share this pattern of increasing maternal CRH during pregnancy with humans. In humans, chimpanzees, and gorillas, maternal CRH and estradiol concentrations are correlated, consistent with the hypothesis that CRH is involved in the biosynthetic pathway for placental estrogen production. In contrast, in baboons, maternal circulating CRH rises precipitously early in pregnancy and then declines, though CRH is detectable until birth. This research was designed to investigate the pattern of maternal circulating CRH in the common marmoset during pregnancy. Blood samples were taken across gestation from nine subjects over 11 pregnancies, and the plasma was assayed for CRH. The pattern of maternal circulating CRH in the common marmoset was similar to that of the baboon, with a rapid rise starting at about 50 days postconception and a peak at approximately 70 days postconception. By 110 days postconception, CRH concentration had plateaued at a significantly lower value. The peak and mean values for CRH were associated with fetal number (e.g., females gestating triplets had higher values than females gestating twins). Urinary estradiol showed no association with plasma CRH concentration. Marmosets appear to differ from the great apes in this regard, and to share a pattern of maternal CRH during pregnancy with the baboon, indicating that the baboon and marmoset pattern may be ancestral. The function of the early rapid rise of CRH in baboons and marmosets, and the significance of this difference between monkeys and apes, are not known.  相似文献   
998.
Recent experiments on behaving monkeys have shown that learning a visual categorization task makes the neurons in infero-temporal cortex (ITC) more selective to the task-relevant features of the stimuli (Sigala and Logothetis in Nature 415 318–320, 2002). We hypothesize that such a selectivity modulation emerges from the interaction between ITC and other cortical area, presumably the prefrontal cortex (PFC), where the previously learned stimulus categories are encoded. We propose a biologically inspired model of excitatory and inhibitory spiking neurons with plastic synapses, modified according to a reward based Hebbian learning rule, to explain the experimental results and test the validity of our hypothesis. We assume that the ITC neurons, receiving feature selective inputs, form stronger connections with the category specific neurons to which they are consistently associated in rewarded trials. After learning, the top-down influence of PFC neurons enhances the selectivity of the ITC neurons encoding the behaviorally relevant features of the stimuli, as observed in the experiments. We conclude that the perceptual representation in visual areas like ITC can be strongly affected by the interaction with other areas which are devoted to higher cognitive functions. Electronic Supplementary Material: Supplementary material is available in the online: version of this article at http://dx.doi.org/10.007/s00422-006-0054-z  相似文献   
999.
Studies in modeled microgravity or during orbital space flights have clearly demonstrated that endothelial cell physiology is strongly affected by the reduction of gravity. Nevertheless, the molecular mechanisms by which endothelial cells may sense gravity force remain unclear. We previously hypothesized that endothelial cell caveolae could be a mechanosensing system involved in hypergravity adaptation of human endothelial cells. In this study, we analyzed the effect on the physiology of human umbilical vein endothelial cell monolayers of short exposure to modeled microgravity (24–48h) obtained by clinorotation. For this purpose, we evaluated the levels of compounds, such as nitric oxide and prostacyclin, involved in vascular tone regulation and synthesized starting from caveolae-related enzymes. Furthermore, we examined posttranslational modifications of Caveolin (Cav)-1 induced by simulated microgravity. The results we collected clearly indicated that short microgravity exposure strongly affected endothelial nitrix oxide synthase activity associated with Cav-1 (Tyr 14) phosphorylation, without modifying the angiogenic response of human umbilical vein endothelial cells. We propose here that one of the early molecular mechanisms responsible for gravity sensing of endothelium involves endothelial cell caveolae and Cav-1 phosphorylation.  相似文献   
1000.
This study was aimed at comparing the oxidative degradation of commercial acetabular cups made of cross-linked polyethylene (XLPE) and conventional ultrahigh molecular weight polyethylene (UHMWPE). After testing against deliberately scratched CoCrMo femoral heads in a hip joint simulator, the cups, microtomed parallel to the articulating surface, were analyzed by IR spectroscopy. Due to the potential for artifacts caused by absorbed contaminants, the IR spectra were compared only after hexane extraction; actually, XLPE was found to absorb more serum than UHMWPE. The two sets of unworn acetabular cups showed different oxidation patterns with consequently different distributions of carbonyl species; unworn XLPE was characterized by lower contents of carbonyl species and hydrogen-bonded alcohols and higher contents of trans-vinylene species than unworn UHMWPE. Upon simulator testing, UHMWPE showed more significant changes in oxidation indexes and distribution of carbonyl compounds than XLPE, confirming a better wear behavior for XLPE under the adopted testing conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号