首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6468篇
  免费   574篇
  国内免费   791篇
  2024年   31篇
  2023年   120篇
  2022年   303篇
  2021年   406篇
  2020年   292篇
  2019年   322篇
  2018年   278篇
  2017年   210篇
  2016年   274篇
  2015年   432篇
  2014年   465篇
  2013年   452篇
  2012年   589篇
  2011年   531篇
  2010年   332篇
  2009年   300篇
  2008年   293篇
  2007年   327篇
  2006年   269篇
  2005年   215篇
  2004年   189篇
  2003年   176篇
  2002年   172篇
  2001年   102篇
  2000年   80篇
  1999年   60篇
  1998年   51篇
  1997年   60篇
  1996年   54篇
  1995年   50篇
  1994年   45篇
  1993年   40篇
  1992年   41篇
  1991年   24篇
  1990年   27篇
  1989年   37篇
  1988年   24篇
  1987年   15篇
  1986年   24篇
  1985年   14篇
  1984年   9篇
  1983年   13篇
  1982年   8篇
  1981年   9篇
  1980年   13篇
  1979年   12篇
  1977年   6篇
  1976年   5篇
  1975年   5篇
  1971年   6篇
排序方式: 共有7833条查询结果,搜索用时 15 毫秒
121.
Giant ragweed (Ambrosia trifida, L. henceforth referred to as GR), an annual non‐native invasive weed, may cause health problems and can reduce agricultural productivity. Chemical control of GR in grasslands may have irreversible side effects on herbs and livestock. In an attempt to propose a solution to the harmful effects of GR on grasslands, this study explores the fate of its soil seed bank (SSB) and considers the physical control of its SSB reduction. By studying GR distributed in grasslands of the Yili Valley, Xinjiang, China, we measured the spatial and temporal changes in seed density, seed germination, dormancy, and death. We analyzed seed germination, dormancy, and death following different storage periods. The study analyzed population characteristics over time, including seed fate, and examined physical control methods for reducing the SSB density. The SSB of GR occurs in the upper 0–15 cm of soil in grasslands. Seed density in the SSB decreased by 68.1% to 82.01% from the reproductive growth period to the senescence period. More than 98.7% of the seeds were rotten, eaten, germinated, dispersed, or died within one year after being produced. The seed germination rate of the SSB decreased with the number of years after invasion. When stored for 0.5 or 3.5 years, seed germination rates fell by 40%, during which time seed death rate increased by almost 40%. When GR was completely eradicated for two consecutive years, the SSB and population densities decreased by >99%. The vast majority of GR seeds germinated or died within one year; the germination rate decreased significantly if the seeds were stored dry at room temperature for a long time. Newly produced seeds are the main source of seeds in the SSB. Therefore, thoroughly eradicating GR plants for several years before the seeds can mature provides an effective control method in grasslands.  相似文献   
122.
为拓宽小麦矮秆遗传资源,利用γ射线辐照济麦22获得了一个赤霉素不敏感型矮秆突变体jm22d。株高相关性状调查结果及茎秆细胞学试验显示,jm22d株高为53±1.8 cm,比野生型(WT)低约20 cm。jm22d整株茎秆共有4节,比WT少一节且各节间长度显著小于WT。与WT相比,jm22d茎秆细胞长度缩短。赤霉素含量测定发现,jm22d叶片中赤霉素含量高于WT,而茎秆中赤霉素含量低于WT(P<0.01),因此,jm22d株高降低与赤霉素转运途径出现异常有关。为了深入研究jm22d对赤霉素的响应机理,对jm22d和WT幼苗进行赤霉素处理,分别收取处理0(D0)、1(D1)和3 d(D3)的样品进行转录组学分析。结果表明,与WT相比,在jm22d中共筛选到696个上调和1 067个下调的表达基因,其中62个和349个基因在3个时间点分别表现为上调和下调表达。叶绿素含量测定表明,jm22d中叶绿素含量随赤霉素处理时间的延长而降低,聚类分析结果表明,差异表达基因主要富集在光合作用-天线蛋白(photosynthesis-antenna proteins,ko00196)、卟啉和叶绿素代谢(porphyrin and chlorophyll metabolism,ko00860)、亚油酸新陈代谢(linoleic acid metabolism,ko00591)等通路,因此赤霉素处理对jm22d体内叶绿素含量的积累具有抑制作用。通过KEGG分析在植物激素信号转导途径中挖掘到5个差异表达基因(TraesCS2B01G582300、TraesCS2B01G600800、TraesCS2B01G556600、TraesCS2B01G630000和TraesCS6B01G439600)参与生长素、细胞分裂素等激素代谢途径,这些基因在jm22d中显著下调,这可能是jm22d矮化的重要原因。研究结果为矮秆突变体矮化机制的解析提供了重要参考。  相似文献   
123.
Jiang  Lina  Fan  Zhengqi  Tong  Ran  Yin  Hengfu  Li  Jiyuan  Zhou  Xingwen 《Molecular biology reports》2021,48(5):3903-3912
Molecular Biology Reports - Camellia nitidissima Chi. is an ornamental plant of the genus Camellia L. Its flowers contain a lot of flavonoids and polyphenols. Flavonoid 3′-hydroxylase...  相似文献   
124.
Yu  Yifei  Hou  Kun  Ji  Tong  Wang  Xishu  Liu  Yining  Zheng  Yangyang  Xu  Jinying  Hou  Yi  Chi  Guangfan 《Molecular and cellular biochemistry》2021,476(5):2111-2124
Molecular and Cellular Biochemistry - MicroRNAs (miRNA), endogenous non-coding RNAs approximately 22 nucleotides long, regulate gene expression by mediating translational inhibition or mRNA...  相似文献   
125.
Li  Dongyang  Liu  Xiaoyu  Li  Tong  Wang  Xiaoran  Jia  Shuwei  Wang  Ping  Wang  Yu-Feng 《Neurochemical research》2021,46(4):980-991
Neurochemical Research - Oxytocin (OT) neuronal activity is the key factor for breastfeeding and it can be disrupted by mother-baby separation. To explore cellular mechanisms underlying OT neuronal...  相似文献   
126.
Yan  Yan  Zhao  Sihan  Ding  Zehong  Tie  Weiwei  Hu  Wei 《Plant Molecular Biology Reporter》2021,39(3):607-616
Plant Molecular Biology Reporter - Cassava is an important starchy and food crop; however, the commercial value of cassava is seriously constrained by postharvest physiological deterioration (PPD)....  相似文献   
127.
Purpose

Bio-jet fuel derived from energy crops has been promoted by governments around the world through policies such as the Carbon Offsetting and Reduction Scheme for International Aviation. The environmental impact and techno-economic analysis of bio-jet fuel are particularly pertinent to China because China is under huge pressure to reduce emissions, endeavouring to meet bio-economic goals.

Methods

An LCA study was conducted on the production of bio-jet fuel from jatropha and castor by estimating the well-to-wake emissions and its economic impact. The functional unit was 1 MJ of bio-jet fuel, and field survey data was used in inventory analysis. A scenario analysis was performed to measure diverse conditions, including the planting conditions, planting regions, allocation methods, and hydrogen sources. A techno-economic analysis that combined the production costs and co-product credits was performed to calculate the minimum bio-jet fuel selling price (MJSP) based on a plant capacity of 2400 metric tonnes of feedstock per day.

Results and discussion

Compared to the environmental impacts to the fossil jet fuel, the use of biofuel would reduce the majority environmental impacts by 36–85%, when a 1:1 displacement of fossil jet fuel is considered, though the human toxicity potential impact was 100% higher. The scenario analysis indicated that (i) planting castor in harsh and unevenly distributed conditions and jatropha in stable or fertile conditions can leverage their respective advantage; (ii) the global warming potential (GWP) from castor planting in the region of north-east China ranges from 34 to 48 g CO2 eq/MJ; (iii) the GWP produced through the steam methane reforming process can be reduced by 16–17%, using advances in technological processes. The MJSP for fuel produced from jatropha and castor under the basic scenario is estimated to be 5.68 and 4.66 CNY/kg, respectively, which falls within the current market price range of 4.5–7.5 CNY/kg.

Conclusions

Bio-jet fuel from jatropha and castor oilseeds offers potential environmental benefits if they can reduce fossil jet fuel on an energy-equivalent basis. However, these benefits are likely to be reduced by the rebound effect of the fuel market. Future research is needed to better understand the magnitude of the rebound effect in China and what policy interventions can be implemented to alleviate it. Scenario analysis demonstrated the feasibility and potential of bio-jet fuel development from multiple perspectives and technological progress are conducive to the realization of environmental protection policies.

  相似文献   
128.
The tea plant (Camellia sinensis) is a thermophilic cash crop and contains a highly duplicated and repeat-rich genome. It is still unclear how DNA methylation regulates the evolution of duplicated genes and chilling stress in tea plants. We therefore generated a single-base-resolution DNA methylation map of tea plants under chilling stress. We found that, compared with other plants, the tea plant genome is highly methylated in all three sequence contexts, including CG, CHG and CHH (where H = A, T, or C), which is further proven to be correlated with its repeat content and genome size. We show that DNA methylation in the gene body negatively regulates the gene expression of tea plants, whereas non-CG methylation in the flanking region enables a positive regulation of gene expression. We demonstrate that transposable element-mediated methylation dynamics significantly drives the expression divergence of duplicated genes in tea plants. The DNA methylation and expression divergence of duplicated genes in the tea plant increases with evolutionary age and selective pressure. Moreover, we detect thousands of differentially methylated genes, some of which are functionally associated with chilling stress. We also experimentally reveal that DNA methyltransferase genes of tea plants are significantly downregulated, whereas demethylase genes are upregulated at the initial stage of chilling stress, which is in line with the significant loss of DNA methylation of three well-known cold-responsive genes at their promoter and gene body regions. Overall, our findings underscore the importance of DNA methylation regulation and offer new insights into duplicated gene evolution and chilling tolerance in tea plants.  相似文献   
129.
Zhang  Ling  Wang  Yingzhe  Li  Tong  Qiu  Hongmei  Xia  Zhengjun  Dong  Yingshan 《Transgenic research》2021,30(1):51-62

Soybean has a palaeopolyploid genome with nearly 75% of the genes present in multiple copies. Although the CRISPR/Cas9 system has been employed in soybean to generate site-directed mutagenesis, a systematical assessment of mutation efficiency of the CRISPR/Cas9 system for the multiple-copy genes is still urgently needed. Here, we successfully optimize one sgRNA CRISPR/Cas9 system in soybean by testing the efficiency, pattern, specificity of the mutations at multiple loci of GmFAD2 and GmALS. The results showed that simultaneous site-directed mutagenesis of two homoeologous loci by one sgRNA, the mutation frequency in the T0 generation were 64.71% for GmPDS, 60.0% for GmFAD2 and 42.86% for GmALS, respectively. The chimeric and heterozygous mutations were dominant types. Moreover, association of phenotypes with mutation pattern at target loci of GmPDS11 and GmPDS18 could help us further demonstrate that the CRISPR/Cas9 system can efficiently generate target specific mutations at multiple loci using one sgRNA in soybean, albeit with a relatively low transformation efficiency.

  相似文献   
130.
Camellia oleifera is believed to exhibit a complex intraspecific polyploidy phenomenon. Abnormal microsporogenesis can promote the formation of unreduced gametes in plants and lead to sexual polyploidy, so it is hypothesized that improper meiosis probably results in the formation of natural polyploidy in Camellia oleifera. In this study, based on the cytological observation of meiosis in pollen mother cells (PMCs), we found natural 2n pollen for the first time in Camellia oleifera, which may lead to the formation of natural polyploids by sexual polyploidization. Additionally, abnormal cytological behaviour during meiosis, including univalent chromosomes, extraequatorial chromosomes, early segregation, laggard chromosomes, chromosome stickiness, asynchronous meiosis and deviant cytokinesis (monad, dyads, triads), was observed, which could be the cause of 2n pollen formation. Moreover, we confirmed a relationship among the length–width ratio of flower buds, stylet length and microsporogenesis. This result suggested that we can immediately determine the microsporogenesis stages by phenotypic characteristics, which may be applicable to breeding advanced germplasm in Camellia oleifera.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12298-021-01002-5.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号