首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   236篇
  免费   18篇
  2022年   1篇
  2021年   1篇
  2020年   5篇
  2019年   2篇
  2018年   1篇
  2017年   6篇
  2016年   6篇
  2015年   11篇
  2014年   9篇
  2013年   17篇
  2012年   17篇
  2011年   16篇
  2010年   12篇
  2009年   13篇
  2008年   10篇
  2007年   10篇
  2006年   13篇
  2005年   12篇
  2004年   12篇
  2003年   5篇
  2002年   8篇
  2001年   6篇
  2000年   10篇
  1999年   8篇
  1998年   2篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   4篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   4篇
  1979年   1篇
  1972年   1篇
  1969年   2篇
  1968年   1篇
  1963年   1篇
  1962年   1篇
排序方式: 共有254条查询结果,搜索用时 203 毫秒
61.

Background  

Mycobacterium avium is an environmental mycobacterium that can be divided into the subspecies avium, hominissuis, paratuberculosis and silvaticum. Some M. avium subspecies are opportunistic pathogens for animals and humans. They are ubiquitous in nature and can be isolated from natural sources of water, soil, plants and bedding material. Isolates of M. avium originating from humans (n = 37), pigs (n = 51) and wild birds (n = 10) in Norway were examined by IS1245 and IS1311 RFLP using new and specific probes and for the presence of IS901 and ISMpa1 by PCR. Analysis and generation of a dendrogram were performed with the software BioNumerics.  相似文献   
62.
We analyzed the temporal and spatial diversity of the microbiota in a low-usage and a high-usage hospital tap. We identified a tap-specific colonization pattern, with potential human pathogens being overrepresented in the low-usage tap. We propose that founder effects and local adaptation caused the tap-specific colonization patterns. Our conclusion is that tap-specific colonization represents a potential challenge for water safety.Humans are exposed to and consume large amounts of tap water in their everyday life, with the tap water microbiota representing a potent reservoir for pathogens (8). Despite the potential impact, our knowledge about the ecological diversification processes of the tap water microbiota is limited (4, 11).The aim of the present work was to determine the temporal and spatial distribution patterns of the planktonic tap water microbiota. We compared the summer and winter microbiota from two hospital taps supplied from the same water source. We analyzed 16S rRNA gene clone libraries by using a novel alignment-independent approach for operational taxonomic unit (OTU) designation (6), while established OTU diversity and richness estimators were used for the ecological interpretations.Tap water samples (1 liter) from a high-usage kitchen and a low-usage toilet cold-water tap in Akershus University Hospital, Lørenskog, Norway, were collected in January and July 2006. The total DNA was isolated and the 16S rRNA gene PCR amplified and sequenced. Based on the sequences, we estimated the species richness and diversity, we calculated the distances between the communities, and trees were constructed to reflect the relatedness of the microbiota in the samples analyzed. Details about these analytical approaches are given in the materials and methods section in the supplemental material.Our initial analysis of species composition was done using the RDPII hierarchical classifier. We found that the majority of pathogen-related bacteria in our data set belonged to the class Gammaproteobacteria. The genera encompassed Legionella, Pseudomonas, and Vibrio (Table (Table1).1). We found a significant overrepresentation of pathogen-related bacteria in the toilet tap (P = 0.04), while there were no significant differences between summer and winter samples. Legionella showed the highest relative abundance for the pathogen-related bacteria. With respect to the total diversity, we found that Proteobacteria dominated the tap water microbiota (representing 86% of the taxa) (see Table S1 in the supplemental material). There was, however, a large portion (56%) of the taxa that could not be assigned to the genus level using this classifier.

TABLE 1.

Cloned sequences related to human pathogensa
Sampling placeSampling timePathogenNCBI accession no.Identity (%)
ToiletSummerEscherichia coliEF41861499
ToiletSummerEscherichia sp.EF07430799
ToiletSummerLegionella sp.AY92415595
ToiletSummerLegionella sp.AY92415395
ToiletSummerLegionella sp.AY92415396
ToiletWinterLegionella sp.AY92406196
ToiletWinterLegionella sp.AY92415897
ToiletWinterLegionella sp.AY92415897
KitchenWinterLegionella sp.AY92399697
ToiletSummerPseudomonas fluorescensEF41307398
ToiletSummerPseudomonas fluorescensEF41307398
KitchenSummerPseudomonas fluorescensDQ20773199
ToiletWinterVibrio sp.DQ40838898
ToiletWinterVibrio sp.AB27476098
KitchenWinterVibrio sp.DQ40838898
KitchenWinterVibrio lentusAY29293699
KitchenWinterVibrio sp.AM18376597
ToiletWinterStenotrophomonas maltophiliaAY83773099
KitchenWinterStenotrophomonas maltophiliaDQ42487098
ToiletWinterStreptococcus suisAF28457898
ToiletWinterStreptococcus suisAF28457898
Open in a separate windowaThe relatedness between the cloned sequences and potential pathogens was determined by BLAST searches of the NCBI database, carried out using default settings.To obtain a better resolution of the uncharacterized microbiota, we analyzed the data using a clustering approach that is not dependent on a predefined bacterial group (see the materials and methods section in the supplemental material for details). These analyses showed that there were three relatively tightly clustered groups in our data set (Fig. (Fig.1A).1A). The largest group (n = 590) was only distantly related to characterized betaproteobacteria within the order Rhodocyclales. We also identified another large betaproteocaterial group (n = 320) related to Polynucleobacter. Finally, a tight group (n = 145) related to the alphaproteobacterium Sphingomonas was identified.Open in a separate windowFIG. 1.Tap water microbiota diversity, determined by use of a principal component analysis coordinate system. (A) Each bacterium is classified by coordinates, with the following color code: brown squares, kitchen summer; red diamonds, toilet summer; green triangles, kitchen winter; and green circles, toilet winter. (B and C) Each square represents a 1 × 1 (B) or 5 × 5 (C) OTU. PC1, first principal component; PC2, second principal component.The tap-specific distributions of the bacterial groups were investigated using density distribution analyses. A dominant population related to Polynucleobacter was identified for the toilet summer samples, while for the winter samples there was a dominance of the Rhodocyclales-related bacteria. The kitchen summer samples revealed a dominance of Sphingomonas. The corresponding winter samples did not reveal distinct high-density bacterial populations (see Table S2 in the supplemental material).Hierarchical clustering for the 1 × 1 OTU density distribution confirmed the relatively low overlap for the microbiota in the samples analyzed (Fig. (Fig.2).2). We found that the microbiota clustered according to tap and not season.Open in a separate windowFIG. 2.Hierarchical clustering for the density distribution of the tap water microbiota. The density of 1 × 1 OTUs was used as a pseudospecies for hierarchical clustering. The tree for the Cord distance matrix is presented, while the distances calculated using the three distance matrices Cord, Brad Curtis, and Sneath Sokal, respectively, are shown for each branch.We have described the species diversity and richness of the microbiota in Table S3 in the supplemental material. For the low taxonomic level, these analyses showed that the diversity and species richness were greater for the winter samples than for the summer samples. Comparing the two taps, the diversity and richness were greater in the kitchen tap than in the toilet tap. In particular, the winter sample from the kitchen showed great richness and diversity. The high taxonomic level, however, did not reveal the same clear differences as did the low level, and the distributions were more even. Rarefaction analyses for the low taxonomic level confirmed the richness and diversity estimates (see Fig. S1 in the supplemental material).Our final analyses sought to fit the species rank distributions to common rank abundance curves. Generally, the rank abundance curves were best fitted to log series or truncated log normal distributions (see Table S4 in the supplemental material). The log series distribution could be fit to all of the samples except the kitchen summer samples at the low taxonomic level, while the truncated log normal distribution could not be fit to the kitchen samples at the high taxonomic level. Interestingly, however, the kitchen winter sample was best fit to a geometric curve at both the high and the low taxonomic level.Diversifying, adaptive biofilm barriers have been documented for tap water bacteria (7), and it is known that planktonic bacteria can interact with biofilms in an adaptive manner (3). On the other hand, tap usage leads to water flowthrough and replacement of the global with the local water population by stochastic founder effects (1).Therefore, we propose that parts of the local diversity observed can be explained by local adaptation (10) and parts by founder effects (9).Most prokaryote diversity measures assume log normal or log series OTU dominance density distributions (5). The kitchen winter sample, however, showed deviations from these patterns by being correlated to geometric distributions (in addition to the log series and truncated log normal distributions for the high taxonomic level). This sample also showed a much greater species richness than the other samples. A possible explanation is that the species richness of the tap water microbiota can be linked to usage and that the kitchen tap is driven toward a founder microbiota by high usage.Since our work indicates an overrepresentation of Legionella in the low-usage tap, it would be of high interest to determine whether the processes for local Legionella colonization can be related to tap usage. Understanding the ecological forces affecting Legionella and other pathogens are of great importance for human health. At the Akerhus University Hospital, this was exemplified by a Pseudomonas aeruginosa outbreak in an intensive care unit, where the outbreak could be traced back to a single tap (2).  相似文献   
63.
Cationic antimicrobial peptides (CAPs) exhibit promising anticancer activities. In the present study, we have examined the in vivo antitumoral effects of a 9-mer peptide, LTX-302, which is derived from the CAP bovine lactoferricin (LfcinB). A20 B cell lymphomas of BALB/c origin were established by subcutaneous inoculation in syngeneic mice. Intratumoral LTX-302 injection resulted in tumor necrosis and infiltration of inflammatory cells followed by complete regression of the tumors in the majority of the animals. This effect was T cell dependent, since the intervention was inefficient in nude mice. Successfully treated mice were protected against rechallenge with A20 cells, but not against Meth A sarcoma cells. Tumor resistance could be adoptively transferred with spleen cells from LTX-302-treated mice. Resistance was abrogated by depletion of T lymphocytes, or either the CD4+ or CD8+ T cell subsets. Taken together, these data suggest that LTX-302 treatment induced long-term, specific cellular immunity against the A20 lymphoma and that both CD4+ and CD8+ T cells were required. Thus, intratumoral administration of lytic peptide might, in addition to providing local tumor control, confer a novel strategy for therapeutic vaccination against cancer.  相似文献   
64.
65.
Neisseria meningitidis (the meningococcus) is an important commensal, pathogen and model organism that faces up to the environment in its exclusive human host with a small but hyperdynamic genome. Compared with Escherichia coli, several DNA-repair genes are absent in N. meningitidis, whereas the gene products of others interact differently. Instead of responding to external stimuli, the meningococcus spontaneously produces a plethora of genetic variants. The frequent genomic alterations and polymorphisms have profound consequences for the interaction of this microorganism with its host, impacting structural and antigenic changes in crucial surface components that are relevant for adherence and invasion as well as antibiotic resistance and vaccine development.  相似文献   
66.
67.
Flow cytometry was used to monitor changes in the DNA content of the polychlorinated biphenyl (PCB)-degrading bacterium Comamonas testosteroni TK102 during growth in the presence or absence of PCBs. In culture medium without PCBs, the majority of stationary-phase cells contained a single chromosome. In the presence of PCBs, the percentage of cells containing two chromosomes increased from 12% to approximately 50%. In contrast, addition of PCBs did not change the DNA contents of three species that are unable to degrade PCBs. In addition, highly chlorinated PCBs that are not degraded by TK102 did not result in a change in the DNA content. These results suggest that PCBs did not affect the DNA content of the cells directly; rather, the intermediate metabolites resulting from the degradation of PCBs caused the increase in DNA content. To study the effect of intermediate metabolites on the DNA content of the cells, four bph genes, bphA1, bphB, bphC, and bphD, were disrupted by gene replacement. The resulting mutant strains accumulated intermediate metabolites when they were grown in the presence of PCBs or biphenyl (BP). When the bphB gene was disrupted, the percentage of cells containing two chromosomes increased in cultures grown with PCBs or BP. When grown with BP, cultures of this mutant accumulated two intermediate metabolites, 2-hydroxybiphenyl (2-OHBP) and 3-OHBP. Addition of 2- or 3-OHBP to a wild-type TK102 and non-PCB-degrading species culture also resulted in an increase in the percentage of cells containing two chromosomes. Electron microscopy revealed that cell-cell separation was inhibited in this culture. This is the first report that hydroxy-BPs can inhibit bacterial cell separation while allowing continued DNA replication.  相似文献   
68.
Two genes predisposing females to autosomal dominant breast cancer are located on chromosome 17. Mutations in the p53-gene on the short arm have been shown to predispose females to early onset breast cancer in families with the rare Li-Fraumeni syndrome. Another locus on 17q (BRCA1), was found to be linked to the disease in a subset of families with breast cancer. In order to determine the involvement of tumour suppressor genes at these loci in tumour development, we studied allele losses for markers on chromosome 17 in 78 familial breast carcinomas. The analysis used six polymorphic DNA markers, three on each arm. We found support for at least four separate regions displaying allele losses on chromosome 17: the p53-region, the distal part of 17p, the BRCA1 region and the distal part of 17q. The frequency of allele losses on distal 17p (16%) is low in these familial tumours compared with the previously reported incidence in sporadic tumours (>50%), whereas the frequency of losses at the p53 locus and on 17q was similar to sporadic tumours (5%–40%). These data suggest that several regions on chromosomal 17 can harbour tumour suppressor genes involved in tumour development of familial breast cancer.  相似文献   
69.
We have isolated the CD59 gene from human genomic libraries. The gene is distributed over more than 27 x 10(3) base-pairs and consists of one 5'-untranslated exon and three coding exons. The gene structure is similar to that of mouse Ly-6 with the exception of the larger size of CD59 introns. Northern blot analysis using six different probes located in the 3'-region of the gene shows that more than four different CD59 mRNA molecules are generated by alternative polyadenylation. Three of these polyadenylation sites were predicted from previously published cDNA sequences. We have isolated a fourth from Jurkat poly(A)+ RNA by the procedure of rapid amplification of cDNA ends. Alternative polyadenylation may be due to the RNA secondary structure around the typical polyadenylation signal, AAUAAA.  相似文献   
70.
Evidence is presented to demonstrate the presence of W chromosome-specific repetitive DNA sequences in the female White Leghorn chicken, Gallus g. domesticus, based on two different experimental approaches. First, 3H-labelled, female chicken DNA was hybridized with excess, unlabelled, mercurated, male DNA, and unhybridized single-stranded 3H-DNA (3H-SHU-DNA) was recovered by SH-Sepharose and hydroxyapatite column chromatography. Approximately 24% of the hybridizable 3H-SHU-DNA was female-specific and localized on the W chromosome. The second approach was to examine female-specific DNA fragments among the digests of chicken DNA with various restriction endonucleases. Among them, we found that digestion with XhoI produced two prominent female-specific bands of 0.60 kb (= kilobase pairs) and 1.1 kb. The 0.60 kb fragment was isolated and 3H-labelled by nick-translation. Female-specificity of the 3H-XhoI—0.60 kb DNA was judged to be at least 95% under the conditions of hybridization with membrane filter-bound DNA. Presence of amplified XhoI—0.60 kb DNA on the W chromosome seems to be limited to different lines of G. g. domesticus and no such repeat was detected in three species belonging to other genera in the order Galliformes and in three species belonging to other avian orders.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号