首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1016篇
  免费   71篇
  2023年   3篇
  2022年   7篇
  2021年   23篇
  2020年   12篇
  2019年   14篇
  2018年   29篇
  2017年   14篇
  2016年   28篇
  2015年   34篇
  2014年   52篇
  2013年   88篇
  2012年   78篇
  2011年   79篇
  2010年   42篇
  2009年   34篇
  2008年   75篇
  2007年   66篇
  2006年   65篇
  2005年   65篇
  2004年   44篇
  2003年   40篇
  2002年   37篇
  2001年   13篇
  2000年   15篇
  1999年   11篇
  1998年   6篇
  1997年   9篇
  1996年   20篇
  1995年   9篇
  1994年   6篇
  1991年   7篇
  1990年   5篇
  1989年   5篇
  1987年   2篇
  1986年   3篇
  1985年   6篇
  1984年   2篇
  1983年   2篇
  1982年   6篇
  1981年   8篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1977年   2篇
  1976年   3篇
  1974年   3篇
  1973年   3篇
  1966年   2篇
  1965年   1篇
  1963年   1篇
排序方式: 共有1087条查询结果,搜索用时 15 毫秒
191.
The aim of this study was to investigate the role of insulin receptor substrate-2 (IRS-2) mediated signal in macrophages on the accumulation of macrophages in the vascular wall. Mice transplanted with IRS-2−/− bone marrow, a model of myeloid cell restricted defect of IRS-2, showed accumulation of monocyte chemoattractant protein-1-expressing macrophages in the vascular wall. Experiments using cultured peritoneal macrophages showed that IRS-2-mediated signal pathway stimulated by physiological concentrations of insulin, not by IL-4, contributed to the suppression of monocyte chemoattractant protein-1 expression induced by lipopolysaccharide. Our data indicated that IRS-2 deficiency in macrophages enhanced their accumulation in the vascular wall accompanied by increased expression of proinflammatory mediators in macrophages. These results suggest a role for insulin resistance in macrophages in early atherosclerogenesis.  相似文献   
192.
Encapsulating peritoneal sclerosis (EPS) often develops after transfer to hemodialysis and transplantation. Both termination of peritoneal dialysis (PD) and transplantation-related factors are risks implicated in post-PD development of EPS, but the precise mechanism of this late-onset peritoneal fibrosis remains to be elucidated. We previously demonstrated that fluid flow stress induced mesothelial proliferation and epithelial-mesenchymal transition via mitogen-activated protein kinase (MAPK) signaling. Therefore, we speculated that the prolonged bioactive effect of fluid flow stress may affect mesothelial cell kinetics after cessation of fluid streaming. To investigate how long mesothelial cells stay under the bioactive effect brought on by fluid flow stress after removal of the stress, we initially cultured mesothelial cells under fluid flow stress and then cultured the cells under static conditions. Mesothelial cells exposed to fluid flow stress for a certain time showed significantly high proliferative activity compared with static conditions after stoppage of fluid streaming. The expression levels of protein phosphatase 2A, which dephosphorylates MAPK, in mesothelial cells changed with time and showed a biphasic pattern that was dependent on the duration of exposure to fluid flow stress. There were no differences in the fluid flow stress-related bioactive effects on mesothelial cells once a certain time had passed. The present findings show that fluid flow stress exerts a prolonged bioactive effect on mesothelial cells after termination of fluid streaming. These findings support the hypothesis that a history of PD for a certain period could serve as a trigger of EPS after stoppage of PD.  相似文献   
193.
Corynebacterium glutamicum GlxR is a cyclic AMP (cAMP) receptor protein-type regulator. Although over 200 GlxR-binding sites in the C. glutamicum genome are predicted in silico, studies on the physiological function of GlxR have been hindered by the severe growth defects of a glxR mutant. This study identified the GlxR regulon by chromatin immunoprecipitation in conjunction with microarray (ChIP-chip) analyses. In total, 209 regions were detected as in vivo GlxR-binding sites. In vitro binding assays and promoter-reporter assays demonstrated that GlxR directly activates expression of genes for aerobic respiration, ATP synthesis, and glycolysis and that it is required for expression of genes for cell separation and mechanosensitive channels. GlxR also directly represses a citrate uptake gene in the presence of citrate. Moreover, ChIP-chip analyses showed that GlxR was still able to interact with its target sites in a mutant with a deletion of cyaB, the sole adenylate cyclase gene in the genome, even though binding affinity was markedly decreased. Thus, GlxR is physiologically functional at the relatively low cAMP levels in the cyaB mutant, allowing the cyaB mutant to grow much better than the glxR mutant.  相似文献   
194.
195.
The chloroplast atpB and atpE genes encode subunits β and ε of the ATP synthase, respectively. They are co-transcribed as dicistronic mRNAs in flowering plants. An unusual feature is an overlap (AUGA) of the atpB stop codon (UGA) with the atpE start codon (AUG). Hence, atpE translation has been believed to depend on atpB translation (i.e. translational coupling). Using an in vitro translation system from tobacco chloroplasts, we showed that both atpB and atpE cistrons are translated from the tobacco dicistronic mRNA, and that the efficiency of atpB translation is higher than that of atpE translation. When the atpB 5′-UTR was replaced with lower efficiency 5′-UTRs, atpE translation was higher than atpB translation. Removal of the entire atpB 5′-UTR arrested atpB translation but atpE translation still proceeded. Introduction of a premature stop codon in the atpB cistron did not abolish atpE translation. These results indicate that atpE translation is independent of atpB translation. Mutation analysis showed that the atpE cistron possesses its own cis-element(s) for translation, located ~25 nt upstream from the start codon.  相似文献   
196.
We analyzed 1,2-propanediol (1,2-PD) production in metabolically engineered Corynebacterium glutamicum. Wild-type C. glutamicum produced 93 μM 1,2-PD after 132 h incubation under aerobic conditions. No gene encoding the methylglyoxal synthase (MGS) which catalyzes the first step of 1,2-PD synthesis from the glycolytic pathway was detected on the C. glutamicum genome, but several genes annotated as encoding putative aldo-keto reductases (AKRs) were present. AKR functions as a methylglyoxal reductase in the 1,2-PD synthesis pathway. Expressing Escherichia coli mgs gene in C. glutamicum increased 1,2-PD yield 100-fold, suggesting that wild-type C. glutamicum carries the genes downstream of MGS in the 1,2-PD synthesis pathway. Furthermore, simultaneous overexpression of mgs and cgR_2242, one of the genes annotated as AKRs, enhanced 1,2-PD production to 24 mM. This work establishes that 1,2-PD synthesis by C. glutamicum, previously unknown, is possible.  相似文献   
197.
Pot1 is a single-stranded telomere-binding protein that is conserved from fission yeast to mammals. Deletion of Schizosaccharomyces pombe pot1(+) causes immediate telomere loss. S. pombe Rqh1 is a homolog of the human RecQ helicase WRN, which plays essential roles in the maintenance of genomic stability. Here, we demonstrate that a pot1Δ rqh1-hd (helicase-dead) double mutant maintains telomeres that are dependent on Rad51-mediated homologous recombination. Interestingly, the pot1Δ rqh1-hd double mutant displays a "cut" (cell untimely torn) phenotype and is sensitive to the antimicrotubule drug thiabendazole (TBZ). Moreover, the chromosome ends of the double mutant do not enter the pulsed-field electrophoresis gel. These results suggest that the entangled chromosome ends in the pot1Δ rqh1-hd double mutant inhibit chromosome segregation, signifying that Pot1 and Rqh1 are required for efficient chromosome segregation. We also found that POT1 knockdown, WRN-deficient human cells are sensitive to the antimicrotubule drug vinblastine, implying that some of the functions of S. pombe Pot1 and Rqh1 may be conserved in their respective human counterparts POT1 and WRN.  相似文献   
198.
Tumor necrosis factor (TNF)-α is a potent proinflammatory cytokine involved in the pathogenesis of diabetic neuropathy. We inactivated TNF-α to determine if it is a valid therapeutic target for the treatment of diabetic neuropathy. We effected the inactivation in diabetic neuropathy using two approaches: by genetic inactivation of TNF-α (TNF-α(-/-) mice) or by neutralization of TNF-α protein using the monoclonal antibody infliximab. We induced diabetes using streptozotocin in wild-type and TNF-α(-/-) mice. We measured serum TNF-α concentration and the level of TNF-α mRNA in the dorsal root ganglion (DRG) and evaluated nerve function by a combination of motor (MNCV) and sensory (SNCV) nerve conduction velocities and tail flick test, as well as cytological analysis of intraepidermal nerve fiber density (IENFD) and immunostaining of DRG for NF-κB p65 serine-276 phosphorylated and cleaved caspase-3. Compared with nondiabetic mice, TNF-α(+/+) diabetic mice displayed significant impairments of MNCV, SNCV, tail flick test, and IENFD as well as increased expression of NF-κB p65 and cleaved caspase-3 in their DRG. In contrast, although nondiabetic TNF-α(-/-) mice showed mild abnormalities of IENFD under basal conditions, diabetic TNF-α(-/-) mice showed no evidence of abnormal nerve function tests compared with nondiabetic mice. A single injection of infliximab in diabetic TNF-α(+/+) mice led to suppression of the increased serum TNF-α and amelioration of the electrophysiological and biochemical deficits for at least 4 wk. Moreover, the increased TNF-α mRNA expression in diabetic DRG was also attenuated by infliximab, suggesting infliximab's effects may involve the local suppression of TNF-α. Infliximab, an agent currently in clinical use, is effective in targeting TNF-α action and expression and amelioration of diabetic neuropathy in mice.  相似文献   
199.
To understand the nature and function of bacterial biofilm and the process of its formation, we have performed systematic screening of a complete set of Escherichia coli genes/open reading frames (ORFs) to identify those that affect biofilm development upon over-expression. In contrast to the biofilm of strain AG1 used as a control, some of the genes/ORFs when over-expressed led to the formation of an abnormal biofilm such as thin, mat-like, filamentous or one easily detaching from various surfaces. Disruptants of selected genes were constructed in order to clarify their roles in the different stages of biofilm formation. Our results suggest that diverse metabolic pathways contribute to the development of biofilm.  相似文献   
200.
Oxidation of 5-acetamido-4,8-anhydro-1,2,3,5-tetradeoxy-D-glycero-D-ido-non-1-enitol [3-C-(2-amino-2-deoxy-beta-D-glucopyranosyl)-1-propene] was studied to search for preparative routes to aminodeoxy didehydro nonulosonic acid derivatives. Since only moderate chiral induction was observed with osmium tetroxide dihydroxylation as well as with peracid epoxidation, the catalytic asymmetric dihydroxylation conditions were applied to give the stereocontrolled formation of 1,2-propanediol derivatives. The structures of these diastereoisomeric 1,2-propanediol derivatives were determined by X-ray crystallographic analyses. The formation of diastereoisomeric 1,2-propanediols also varied with the nature of 2-substituent on the aminodoexy glycosyl moiety. Thus 5-acetamido-4,8-anhydro-3,5-dideoxy-D-erythro-L-ido-nonitol [(2S)-3-C-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-1,2-propanediol] was obtained predominantly up to 70% from 3-C-(2-acetamido-2-deoxyglycosyl)-1-propene by the use of ADmixbeta reagent. The (2S)-propanediol derivative was transformed in a five-step reaction sequence to 2,3-didehydro-2,7-dideoxy-N-acetylneuraminic acid.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号