首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   745篇
  免费   44篇
  2023年   2篇
  2022年   7篇
  2021年   20篇
  2020年   8篇
  2019年   9篇
  2018年   24篇
  2017年   15篇
  2016年   20篇
  2015年   20篇
  2014年   34篇
  2013年   67篇
  2012年   62篇
  2011年   57篇
  2010年   31篇
  2009年   23篇
  2008年   46篇
  2007年   46篇
  2006年   49篇
  2005年   45篇
  2004年   25篇
  2003年   30篇
  2002年   34篇
  2001年   6篇
  2000年   10篇
  1999年   7篇
  1998年   4篇
  1997年   6篇
  1996年   16篇
  1995年   6篇
  1994年   3篇
  1992年   2篇
  1991年   2篇
  1990年   5篇
  1989年   4篇
  1988年   1篇
  1987年   3篇
  1986年   2篇
  1985年   5篇
  1984年   6篇
  1983年   1篇
  1982年   5篇
  1981年   8篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1977年   2篇
  1976年   1篇
  1974年   2篇
  1970年   1篇
  1969年   2篇
排序方式: 共有789条查询结果,搜索用时 281 毫秒
171.
Receptor activator of NF-kappaB ligand (RANKL) is a transmembrane glycoprotein that has an essential role in the development of osteoclasts. The extracellular portion of RANKL is cleaved proteolytically to produce soluble RANKL, but definite RANKL sheddase(s) and the physiologic function of RANKL shedding have not yet been determined. In the present study, we found that matrix metalloproteinase (MMP) 14 and a disintegrin and metalloproteinase (ADAM) 10 have strong RANKL shedding activity. In Western blot analysis, soluble RANKL was detected as two different molecular weight products, and RNA interference of MMP14 and ADAM10 resulted in a reduction of both the lower and higher molecular weight products. Suppression of MMP14 in primary osteoblasts increased membrane-bound RANKL and promoted osteoclastogenesis in cocultures with macrophages. Soluble RANKL produced by osteoblasts from MMP14-deficient mice was markedly reduced, and their osteoclastogenic activity was promoted, consistent with the findings of increased osteoclastogenesis in vivo. RANKL shedding is an important process that down-regulates local osteoclastogenesis.  相似文献   
172.
173.
Autoimmunity is often accompanied by the development of ectopic lymphoid tissues in the target organ, and these tissues have been believed to have close relevance to the severity of the disease. However, the true relationship between the extent of such lymphoid structures and the intensity or type of immune responses mediated by self-reactive T cells has remained unclear. In the present study, we generated transgenic mice expressing TCR from an autoimmune gastritis (AIG)-inducing Th1 cell clone specific for one of the major stomach self-Ags, H(+)/K(+)-ATPase alpha subunit. The transgenic mice spontaneously develop massive lymphoid neogenesis with a highly organized tissue structure in the gastric mucosa, demonstrating Ag-specific, T cell-mediated induction of the lymphoid tissues. Nevertheless, the damage of surrounding tissue and autoantibody production were considerably limited compared with those in typical AIG induced by neonatal thymectomy. Such a moderate pathology is likely due to the locally restricted activation and Th2 skewing of self-reactive T cells, as well as the accumulation of naturally occurring regulatory T cells in the target organ. Altogether, the findings suggest that lymphoid neogenesis in chronic autoimmunity does not simply correlate with the destructive response; rather, the overall activation status of the T cell network, i.e., the balance of self-reactivity and tolerance, in the local environment has an impact.  相似文献   
174.
Several epidemiological studies have revealed that subjects with postprandial hyperglycemia are at increased risk of cardiovascular disease. However, the impact of postprandial hyperglycemia and its treatment on endothelial function has not been clarified yet. In this study, Goto-Kakizaki (GK) rats, a non-obese type 2 diabetes model, fed twice daily were used as a model of repetitive postprandial glucose spikes. We investigated the endothelial function in these rats treated or untreated with acarbose, an alpha-glucosidase inhibitor. Administration of acarbose for 12 weeks markedly improved postprandial hyperglycemia, postprandial insulin level, total cholesterol, triglyceride, and free fatty acid level in GK rats. Furthermore, acarbose efficiently reduced the number of monocytes adherent to aortic endothelial layer, improved acetylcholine-dependent vasodilatation, and reduced intimal thickening of the aorta. While it is generally regarded that repetitive postprandial hyperglycemia is associated with the onset of cardiovascular diseases, our data demonstrated that acarbose treatment efficiently ameliorated endothelial dysfunction and reduced intimal thickening, thus adding support to the protective effect of acarbose against the onset of cardiovascular disease.  相似文献   
175.
D-amino acid oxidase (DAO) is a flavoenzyme that catalyzes the oxidation of D-amino acids. In the brain, gene expression of DAO is detected in astrocytes. Among the possible substrates of DAO in vivo, D-serine is proposed to be a neuromodulator of the N-methyl-D-aspartate (NMDA) receptor. In a search for the physiological role of DAO in the brain, we investigated the metabolism of extracellular D-serine in glial cells. Here we show that after D-serine treatment, rat primary type-1 astrocytes exhibited increased cell death. In order to enhance the enzyme activity of DAO in cells, we established stable rat C6 glial cells overexpressing mouse DAO designated as C6/DAO. Treatment with a high dose of D-serine led to the production of hydrogen peroxide (H(2)O(2)) followed by apoptosis in C6/DAO cells. Among the amino acids tested, D-serine specifically exhibited a significant cell death-inducing effect. DAO inhibitors, i.e., sodium benzoate and chlorpromazine, partially prevented the death of C6/DAO cells treated with D-serine, indicating the involvement of DAO activity in d-serine metabolism. Overall, we consider that extracellular D-serine can gain access to intracellular DAO, being metabolized to produce H(2)O(2). These results support the proposal that astroglial DAO plays an important role in metabolizing a neuromodulator, D-serine.  相似文献   
176.
Fungal protease inhibitor F (FPI-F) from silkworm inhibits subtilisin and fungal proteases. FPI-F mutants P(1) residues of which, Thr(29), were replaced with Glu, Phe, Gly, Leu, Met, and Arg, were prepared. The inhibitory activities of mutated FPI-F against subtilisin and other mammalian proteases indicated that FPI-F might be a specific inhibitor toward subtilisin-type protease.  相似文献   
177.
Recently we reported that N-glycans on the β-propeller domain of the integrin α5 subunit (S-3,4,5) are essential for α5β1 heterodimerization, expression, and cell adhesion. Herein to further investigate which N-glycosylation site is the most important for the biological function and regulation, we characterized the S-3,4,5 mutants in detail. We found that site-4 is a key site that can be specifically modified by N-acetylglucosaminyltransferase III (GnT-III). The introduction of bisecting GlcNAc into the S-3,4,5 mutant catalyzed by GnT-III decreased cell adhesion and migration on fibronectin, whereas overexpression of N-acetylglucosaminyltransferase V (GnT-V) promoted cell migration. The phenomenon is similar to previous observations that the functions of the wild-type α5 subunit were positively and negatively regulated by GnT-V and GnT-III, respectively, suggesting that the α5 subunit could be duplicated by the S-3,4,5 mutant. Interestingly GnT-III specifically modified the S-4,5 mutant but not the S-3,5 mutant. This result was confirmed by erythroagglutinating phytohemagglutinin lectin blot analysis. The reduction in cell adhesion was consistently observed in the S-4,5 mutant but not in the S-3,5 mutant cells. Furthermore mutation of site-4 alone resulted in a substantial decrease in erythroagglutinating phytohemagglutinin lectin staining and suppression of cell spread induced by GnT-III compared with that of either the site-3 single mutant or wild-type α5. These results, taken together, strongly suggest that N-glycosylation of site-4 on the α5 subunit is the most important site for its biological functions. To our knowledge, this is the first demonstration that site-specific modification of N-glycans by a glycosyltransferase results in functional regulation.Glycosylation is a crucial post-translational modification of most secreted and cell surface proteins (1). Glycosylation is involved in a variety of physiological and pathological events, including cell growth, migration, differentiation, and tumor invasion. It is well known that glycans play important roles in cell-cell communication, intracellular signal transduction, protein folding, and stability (2, 3).Integrins comprise a family of receptors that are important for cell adhesion. The major function of integrins is to connect cells to the extracellular matrix, activate intracellular signaling pathways, and regulate cytoskeletal formation (4). Integrin α5β1 is well known as a fibronectin (FN)3 receptor. The interaction between integrin α5 and FN is essential for cell migration, cell survival, and development (58). In addition, integrins are N-glycan carrier proteins. For example, α5β1 integrin contains 14 and 12 putative N-glycosylation sites on the α5 and β1 subunits, respectively. Several studies suggest that N-glycosylation is essential for functional integrin α5β1. When human fibroblasts were cultured in the presence of 1-deoxymannojirimycin, which prevents N-linked oligosaccharide processing, immature α5β1 integrin appeared on the cell surface, and FN-dependent adhesion was greatly reduced (9). Treatment of purified integrin α5β1 with N-glycosidase F, which cleaves between the innermost N-acetylglucosamine (GlcNAc) and asparagine N-glycan residues of N-linked glycoproteins, prevented the inherent association between subunits and blocked α5β1 binding to FN (10).A growing body of evidence indicates that the presence of the appropriate oligosaccharide can modulate integrin activation. N-Acetylglucosaminyltransferase III (GnT-III) catalyzes the addition of GlcNAc to mannose that is β1,4-linked to an underlying N-acetylglucosamine, producing what is known as a “bisecting” GlcNAc linkage as shown in Fig. 1B. GnT-III is generally regarded as a key glycosyltransferase in N-glycan biosynthetic pathways and contributes to inhibition of metastasis. The introduction of a bisecting GlcNAc catalyzed by GnT-III suppresses additional processing and elongation of N-glycans. These reactions, which are catalyzed in vitro by other glycosyltransferases, such as N-acetylglucosaminyltransferase V (GnT-V), which catalyzes the formation of β1,6 GlcNAc branching structures (Fig. 1B) and plays important roles in tumor metastasis, do not proceed because the enzymes cannot utilize the bisected N-glycans as a substrate. Introduction of the bisecting GlcNAc to integrin α5 by overexpression of GnT-III resulted in decreased in ligand binding and down-regulation of cell adhesion and migration (1113). Contrary to the functions of GnT-III, overexpression of GnT-V promoted integrin α5β1-mediated cell migration on FN (14). These observations clearly demonstrate that the alteration of N-glycan structure affected the biological functions of integrin α5β1. Similarly characterization of the carbohydrate moieties in integrin α3β1 from non-metastatic and metastatic human melanoma cell lines showed that expression of β1,6 GlcNAc branched structures was higher in metastatic cells compared with non-metastatic cells, confirming the notion that the β1,6 GlcNAc branched structure confers invasive and metastatic properties to cancer cells. In fact, Partridge et al. (15) reported that GnT-V-modified N-glycans containing poly-N-acetyllactosamine, the preferred ligand for galectin-3, on surface receptors oppose their constitutive endocytosis, promoting intracellular signaling and consequently cell migration and tumor metastasis.Open in a separate windowFIGURE 1.Potential N-glycosylation sites on the α5 subunit and its modification by GnT-III and GnT-V. A, schematic diagram of potential N-glycosylation sites on the α5 subunit. Putative N-glycosylation sites are indicated by triangles, and point mutations are indicated by crosses (N84Q, N182Q, N297Q, N307Q, N316Q, N524Q, N530Q, N593Q, N609Q, N675Q, N712Q, N724Q, N773Q, and N868Q). B, illustration of the reaction catalyzed by GnT-III and GnT-V. Square, GlcNAc; circle, mannose. TM, transmembrane domain.In addition, sialylation on the non-reducing terminus of N-glycans of α5β1 integrin plays an important role in cell adhesion. Colon adenocarcinomas express elevated levels of α2,6 sialylation and increased activity of ST6GalI sialyltransferase. Elevated ST6GalI positively correlated with metastasis and poor survival. Therefore, ST6GalI-mediated hypersialylation likely plays a role in colorectal tumor invasion (16, 17). In fact, oncogenic ras up-regulated ST6GalI and, in turn, increased sialylation of β1 integrin adhesion receptors in colon epithelial cells (18). However, this is not always the case. The expression of hyposialylated integrin α5β1 was induced by phorbol esterstimulated differentiation in myeloid cells in which the expression of the ST6GalI was down-regulated by the treatment, increasing FN binding (19). A similar phenomenon was also observed in hematopoietic or other epithelial cells. In these cells, the increased sialylation of the β1 integrin subunit was correlated with reduced adhesiveness and metastatic potential (2022). In contrast, the enzymatic removal of α2,8-linked oligosialic acids from the α5 integrin subunit inhibited cell adhesion to FN (23). Collectively these findings suggest that the interaction of integrin α5β1 with FN is dependent on its N-glycosylation and the processing status of N-glycans.Because integrin α5β1 contains multipotential N-glycosylation sites, it is important to determine the sites that are crucial for its biological function and regulation. Recently we found that N-glycans on the β-propeller domain (sites 3, 4, and 5) of the integrin α5 subunit are essential for α5β1 heterodimerization, cell surface expression, and biological function (24). In this study, to further investigate the underlying molecular mechanism of GnT-III-regulated biological functions, we characterized the N-glycans on the α5 subunit in detail using genetic and biochemical approaches and found that site-4 is a key site that can be specifically modified by GnT-III.  相似文献   
178.
In order to increase metabolic stability and water solubility of arenastatin A, an extremely potent cytotoxic depsipeptide from the Okinawan marine sponge of Dysidea arenaria, several 15,20-triamide analogues with a polar substituent on the phenyl ring were synthesized. The 15,20-triamide analogues with a polar substituent (24, 30, and 31) showed increased solubility to MeOH and stronger cytotoxicity against KB cells in comparison with the parental 15,20-triamide analogue (2). Furthermore, the diethylamine analogue (30) exhibited in vivo anti-tumor activity against subcutaneously implanted murine sarcoma.  相似文献   
179.
180.
Virological features of fulminant liver disease-causing hepatitis B virus (HBV) have not been fully elucidated. We studied longitudinally the viruses obtained before and after fulminant liver disease in a patient with chronic HBV infection showing fatal exacerbation. HBV strains were obtained before and after exacerbation (designated as FEP1 and FEP2). Their virological features were investigated by in vitro transfection. FEP1 and FEP2 possessed higher activity of overall HBV DNA synthesis than the wild-type. FEP1 lacked competence for relaxed circular (RC) HBV DNA synthesis and RC HBV DNA-containing virion secretion, but FEP2 maintained it. Chimeric analysis revealed that the preS/S gene, where FEP1 had a considerable number of mutations and deletions but FEP2 did not, was responsible for impaired RC HBV DNA synthesis and virion secretion. Furthermore, incompetence of FEP1 strain was transcomplemented by the preS/S protein of wild-type strain. In conclusion, the viral strain after exacerbation showed resurgent RC HBV DNA synthesis and virion secretion, which was caused by conversion of the preS/S gene from a hypermutated to hypomutated state. This may have been responsible for disease deterioration in the patient. This is a novel type of HBV genomic variation associated with the development of fulminant liver disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号