首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   430篇
  免费   26篇
  2022年   3篇
  2021年   10篇
  2020年   3篇
  2019年   8篇
  2018年   4篇
  2017年   4篇
  2016年   7篇
  2015年   15篇
  2014年   15篇
  2013年   28篇
  2012年   18篇
  2011年   25篇
  2010年   13篇
  2009年   7篇
  2008年   25篇
  2007年   23篇
  2006年   17篇
  2005年   29篇
  2004年   26篇
  2003年   20篇
  2002年   24篇
  2001年   15篇
  2000年   10篇
  1999年   11篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   4篇
  1993年   2篇
  1992年   8篇
  1991年   8篇
  1989年   5篇
  1987年   4篇
  1986年   4篇
  1985年   7篇
  1984年   2篇
  1983年   3篇
  1982年   3篇
  1980年   4篇
  1979年   7篇
  1978年   3篇
  1977年   5篇
  1976年   4篇
  1975年   3篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1963年   1篇
  1962年   1篇
排序方式: 共有456条查询结果,搜索用时 31 毫秒
51.
The COCH gene mutated in DFNA9, an autosomal dominant hereditary sensorineural hearing loss and vestibular disorder, encodes Cochlin. Previously, we reported three bovine Cochlin isoforms, p63s, p44s, and p40s, which exhibit significant molecular heterogeneity in vivo. Here we have characterized Cochlin isoforms by generating four isoform-specific anti-Cochlin antibodies. The same three Cochlin isoforms, p63s, p44s, and p40s, were detected in human and cow inner ear tissue; however, p44s and p40s were not detected in perilymph. We identified a novel short 16kDa isoform in human perilymph and a 18-23kDa isoform in cow perilymph, named Cochlin-tomoprotein (CTP), corresponding to the N-terminus of full-length Cochlin (p63s) and the LCCL domain. Notably, CTP contains all of the known mutation sites associated with DFNA9. The pathogenesis of DFNA9 is not fully clarified as yet, and this novel perilymph-associated CTP isoform might provide mechanistic clues to how mutations in the COCH gene damage the inner ear function.  相似文献   
52.
53.
54.
The left-right (LR) axis is essential for the proper function of internal organs. In mammals and fish, left-sided Nodal expression governs LR patterning. Here, we show that the Polycomb group protein Ezh1, which is highly conserved from fish to human, participates in LR patterning. Knockdown of olezh1, a medaka homologue of Ezh1, led to LR reversal of internal organs. It was shown that OLEZH1 acts in silencing the expression of Spaw (a medaka homolog of Nodal) via a previously unknown pathway. Furthermore, coimmunoprecipitation showed physical interaction of Ezh1 with FoxH1, a Nodal regulator. This represents a novel mechanism for LR patterning and implies that Ezh1 has developmental importance.  相似文献   
55.
Human APOBEC3F (huA3F) potently restricts the infectivity of HIV-1 in the absence of the viral accessory protein virion infectivity factor (Vif). Vif functions to preserve viral infectivity by triggering the degradation of huA3F but not rhesus macaque A3F (rhA3F). Here, we use a combination of deletions, chimeras, and systematic mutagenesis between huA3F and rhA3F to identify Glu(324) as a critical determinant of huA3F susceptibility to HIV-1 Vif-mediated degradation. A structural model of the C-terminal deaminase domain of huA3F indicates that Glu(324) is a surface residue within the α4 helix adjacent to residues corresponding to other known Vif susceptibility determinants in APOBEC3G and APOBEC3H. This structural clustering suggests that Vif may bind a conserved surface present in multiple APOBEC3 proteins.  相似文献   
56.
BACKGROUND AND AIMS: Methyl CpG-binding proteins are considered to play critical roles in epigenetic control of gene expression by recognizing and interacting with 5-methylcytosine (m(5)C) in eukaryotes. However, among 13 corresponding genes in Arabidopsis thaliana, designated as featuring a methyl-binding domain (MBD), only four have so far been shown actually to bind to m(5)C. One example, AtMBD5, was selected here to screen for interacting proteins. METHODS: Yeast two-hybrid assays were used for screening, and physical interaction was confirmed by pull-down and bimolecular fluorescence complementation (BiFC) assays. Cellular localization was analysed by fluorescence-tagged fusion proteins using tobacco (Nicotiana tabacum) cultured bright yellow 2 cells. KEY RESULTS: A gene finally identified was found to encode AtRAN3, a protein that belongs to the Ran GTPase family, which plays a critical role in nucleocytoplasmic transport and spindle bipolarization during cell division. AtMBD5 and AtRAN3 were clearly shown to interact in the nucleus by BiFC. On co-expression of AtMBD5-cyan fluorescence protein and yellow fluorescence protein-AtRAN3 in tobacco cells, both localized to the nucleus in the resting stage, migrating to the cytoplasm, primarily around chromatin, during mitosis, particularly at metaphase. CONCLUSIONS: These results suggest that AtMBD5 becomes localized to the vicinity of chromosomes with the aid of AtRAN3 during cell division, and may play an important role not only in maintenance of chromatin structures by binding to m(5)C, but also in progress through mitosis by detaching from m(5)C. The present findings also shed light on the physiological function of Ran GTPases, direct target proteins of which have not thus far been well defined, suggesting their key role in chromatin movements in plant cells.  相似文献   
57.
Effect of zinc and other metal ions on the folding of the protein kinase C (PKC) surrogate peptide (PKCeta-C1B) was analyzed intact under neutral conditions by electrospray ionization mass spectrometry (ESI-MS). ESI-MS spectrum of 64ZnCl(2)-folded PKCeta-C1B clearly showed that PKCeta-C1B coordinates specifically two atoms of zinc, and that the two thiol protons are lost in each zinc ion coordinate center. 113CdCl(2)-folded PKCeta-C1B also showed stoichiometry of two cadmium atoms that was proved by addition of EDTA. The dissociation constants of zinc- and cadmium-folded PKCeta-C1B in the phorbol 12,13-dibutyrate binding (PDBu) were similar (0.66 and 0.81 nM) with different B(max) values (46.4 and 71.4%). The difference would reflect higher coordination potency of cadmium ion that was demonstrated by ESI-MS when PKCeta-C1B was folded by 1:1 mixture of zinc and cadmium ions. In contrast, 63CuCl(2)-treated PKCeta-C1B did not show any copper-coordinated peak, instead a molecular mass less than 6 mass units smaller than that of apo-PKCeta-C1B was observed. The multiple charge mass envelope of copper-treated PKCeta-C1B shifted to that of the lower mass charge state like zinc-treated PKCeta-C1B. These data suggest that the copper treatment formed three intramolecular S-S bonds to abolish the PDBu binding of PKCeta-C1B.  相似文献   
58.
Growth differentiation factor-9 (GDF-9), a member of the transforming growth factor-β (TGF-β) superfamily, is expressed exclusively in the oocyte within the ovary and plays essential roles in the ovarian function in mammals. However, a possible involvement of GDF-9 in canine ovarian physiology that has a unique ovulation process among mammals has not been studied. Interestingly, we have isolated two types of cDNA clones generated by an alternative splicing from a canine ovarian total RNA. The predominant long form cDNA shares a common precursor structure with GDF-9s in other species whereas the minor short form cDNA has a 172 amino acid truncation in the proregion. Using a transient expression system, we found that the long form cDNA has a defect in mature protein production whereas the short form cDNA readily produces mature protein. However, mutations at one or two N-glycosylation sites in the mature domain of the short form GDF-9 caused a loss in mature protein production. These results suggest that the prodomain and N-linked glycosylation of the mature domain regulate proper processing and secretion of canine GDF-9. Based on the biological functions of GDF-9, these characteristics of canine GDF-9 could be causatively linked to the unique ovulation process in the Canidae.  相似文献   
59.
We determined the three-dimensional structure of the PHD finger of the rice Siz/PIAS-type SUMO ligase, OsSiz1, by NMR spectroscopy and investigated binding ability for a variety of methylated histone H3 tails, showing that OsSiz1-PHD primarily recognizes dimethylated Arg2 of the histone H3 and that methylations at Arg2 and Lys4 reveal synergy effect on binding to OsSiz1-PHD. The K4 cage of OsSiz1-PHD for trimethylated Lys4 of H3K4me3 was similar to that of the BPTF-PHD finger, while the R2 pocket for Arg2 was different. It is intriguing that the PHD module of Siz/PIAS plays an important role, with collaboration with the DNA binding domain SAP, in gene regulation through SUMOylation of a variety of effectors associated with the methylated arginine-riched chromatin domains.  相似文献   
60.
Z Fu  T Nakayama  N Sato  Y Izumi  Y Kasamaki  A Shindo  M Ohta  M Soma  N Aoi  M Sato  Y Ozawa  Y Ma 《Hereditas》2012,149(3):91-98
CYP4A11, which is a member of the cytochrome P450 family, acts mainly as an enzyme that converts arachidonic acid to 20-hydroxyeicosatetraenoic acid (20-HETE), a metabolite involved in the maintenance of cardiovascular health. Recently, it was reported that many subfamilies of CYP genes have an association with myocardial infarction (MI). The aim of the present study was to assess the association between the human CYP4A11 gene and MI, using a haplotype-based case-control study with a separate analysis of the gender groups. A total of 239 MI patients and 285 controls were genotyped for 3 single-nucleotide polymorphisms (SNPs) of the human CYP4A11 gene (rs2269231, rs1126742, rs9333025). The data obtained via haplotype-based case-control studies were assessed for 3 separate groups: total subjects, men, and women. For the total, men and women groups, the distribution of the genotypes and alleles of the 3 SNPs did not show any significant difference between the MI patients and the control subjects. For the total and the men groups, the overall distribution of the haplotypes constructed with the 3 SNPs significantly differed between the MI patients and control subjects (P < 0.001). Also, for the total and for the men, the frequency of the T-T-A haplotype constructed with the 3 SNPs was significantly lower for the MI patients than for the control subjects (both P 相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号