首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   851篇
  免费   60篇
  2023年   2篇
  2022年   5篇
  2021年   16篇
  2020年   7篇
  2019年   8篇
  2018年   15篇
  2017年   18篇
  2016年   17篇
  2015年   35篇
  2014年   38篇
  2013年   57篇
  2012年   58篇
  2011年   50篇
  2010年   31篇
  2009年   34篇
  2008年   44篇
  2007年   58篇
  2006年   44篇
  2005年   67篇
  2004年   60篇
  2003年   41篇
  2002年   33篇
  2001年   19篇
  2000年   6篇
  1999年   10篇
  1998年   13篇
  1997年   9篇
  1996年   4篇
  1995年   8篇
  1994年   8篇
  1993年   8篇
  1992年   15篇
  1991年   8篇
  1990年   9篇
  1989年   6篇
  1988年   5篇
  1987年   3篇
  1986年   2篇
  1985年   6篇
  1984年   4篇
  1983年   4篇
  1981年   2篇
  1979年   4篇
  1978年   3篇
  1977年   2篇
  1976年   4篇
  1973年   2篇
  1971年   4篇
  1969年   1篇
  1967年   1篇
排序方式: 共有911条查询结果,搜索用时 31 毫秒
11.
Human lymphoid cells (NC-37) persistently infected with either measles virus (Schwarz and TYCSA strains) or subacute sclerosing panencephalitis (SSPE) virus (Halle and Mantooth strains) were destroyed in the presence of complement by anti-measles sera as well as by sera from SSPE patients. The cytotoxic activity was demonstrated in both IgG and IgM fractions of measles convalescent sera, but only in IgG fraction of SSPE sera. Measles convalescent sera completely lost the cytotoxic activity to all the cell lines, when absorbed with any one of the cell lines, indicating that the viral surface antigens of these cell lines infected with measles or SSPE virus are identical. On the other hand, the cytotoxic activity of SSPE sera could not be readily absorbed with these cells. Thus, the affinity of SSPE sera for the viral surface antigens might be lower than that of measles convalescent sera.  相似文献   
12.
The cytochrome bo complex is a terminal ubiquinol oxidase in the aerobic respiratory chain of Escherichia coli (Kita, K., Konishi, K., and Anraku, Y. (1984) J. Biol. Chem. 259, 3368-3374) and functions as a proton pump. It belongs to the heme-copper oxidase superfamily with the aa3-type cytochrome c oxidases in mitochondria and aerobic bacteria. In order to identify ligands of hemes and copper, we have substituted eight conserved histidines in subunit I by alanine and, in addition, His-106, -284, and -421 by glutamine and methionine. Western immunoblotting analysis showed that all the mutations do not affect the expression level of subunit I in the cytoplasmic membrane, indicating that these histidines are not crucial for its stability. A single copy expression vector carrying a single mutation at the invariant histidines, His-106, His-284, His-333, His-334, His-419, and His-421, of subunit I was unable to support the aerobic growth of a strain in which the chromosomal terminal oxidase genes (the cyo and cyd operons) have been deleted. The same mutations caused a complete loss of ubiquinol oxidase activity of the partially purified enzymes. Spectroscopic analysis of mutant oxidases in the cytoplasmic membrane revealed that substitutions of His-106 and -421 specifically eliminated a 563.5 nm peak of the low spin heme and that replacements of His-106, -284, and -419 reduced the extent of the CO-binding high spin heme. These spectroscopic properties of mutant oxidases were further confirmed with partially purified preparations. Atomic absorption analysis showed that substitutions of His-106, -333, -334, and -419 eliminated CuB almost completely. Based on these findings, we conclude that His-106 and -421 function as the axial ligands of the low spin heme and His-284 is a possible ligand of the high spin heme. His-333, -334, and -419 residues are attributed to the ligands of CuB. We present a helical wheel model of the redox center in subunit I, which consists of the membrane-spanning regions II, VI, VII, and X, and discuss the implications of the model.  相似文献   
13.
14.
Novel restriction fragment length polymorphisms (RFLPs) in inbred rats were revealed with the human N-ras gene as probe. Three fragments hybridizing to the probe were detected by Southern blot hybridization under highly stringent conditions, and one of the fragments showed variation in inbred rat strains. Furthermore, on hybridization under low-stringency conditions, an additional fragment hybridizing to the probe was observed, and this fragment also showed interstrain variation. These two variant fragments showed different distributions in 27 inbred rat strains and segregated in backcross progeny as codominant alleles of independent single autosomal loci. Therefore, the loci for these RFLPs were named Nras-1 and Nras-2, respectively. Analyses of linkages between the RFLPs and 11 other loci revealed that the Nras-2 locus was closely linked to the c locus (3.7 +/- 2.6%), which belongs to rat linkage group I.  相似文献   
15.
Host DNA synthesis-suppressing factor (DSF) produced into culture fluid of cloned HeLa cells (HeLa C-9) infected with a small plaque variant of Toyoshima strain of measles virus was purified by precipitation with ammonium sulfate, chromatography on CM-cellulose and DEAE-cellulose, and gel-filtration on Sephadex G-100 and G-200. The specific activity of the finally purified DSF was 302 units/mg of protein representing approximately 300-fold purification. The molecular weight of DSF was estimated to be about 55 000. By isoelectric focusing, two kinds of DSF having isoelectric points of 4.24 and 5.24 were detectable. The purified DSF was able to suppress host DNA synthesis of HeLa cells, continuous human lymphoid cells (NC-37), mouse L cells and Meth-A cells derived from an ascitic tumor of the mouse. The activity of the purified DSF was inactivated by heating at 56 C for 30 min or by treatment with trypsin.  相似文献   
16.
The injurious effect of pisatin on the plasma membrane of pea   总被引:4,自引:0,他引:4  
The main cause of wilting which occurs in pea leaves heavilyinfected with powdery mildew was suggested to be due to theinjurious effect of pisatin, a defensive antifungal substanceproduced by the host leaves, which affects the plasma membraneof the same host cells. (Received May 29, 1975; )  相似文献   
17.
18.
19.
20.
Absorption of light in excess of the capacity for photosynthetic electron transport is damaging to photosynthetic organisms. Several mechanisms exist to avoid photodamage, which are collectively referred to as nonphotochemical quenching. This term comprises at least two major processes. State transitions (qT) represent changes in the relative antenna sizes of photosystems II and I. High energy quenching (qE) is the increased thermal dissipation of light energy triggered by lumen acidification. To investigate the respective roles of qE and qT in photoprotection, a mutant (npq4 stt7-9) was generated in Chlamydomonas reinhardtii by crossing the state transition–deficient mutant (stt7-9) with a strain having a largely reduced qE capacity (npq4). The comparative phenotypic analysis of the wild type, single mutants, and double mutants reveals that both state transitions and qE are induced by high light. Moreover, the double mutant exhibits an increased photosensitivity with respect to the single mutants and the wild type. Therefore, we suggest that besides qE, state transitions also play a photoprotective role during high light acclimation of the cells, most likely by decreasing hydrogen peroxide production. These results are discussed in terms of the relative photoprotective benefit related to thermal dissipation of excess light and/or to the physical displacement of antennas from photosystem II.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号