首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1895篇
  免费   131篇
  2022年   10篇
  2021年   24篇
  2020年   7篇
  2019年   13篇
  2018年   23篇
  2017年   31篇
  2016年   28篇
  2015年   63篇
  2014年   69篇
  2013年   104篇
  2012年   105篇
  2011年   107篇
  2010年   69篇
  2009年   61篇
  2008年   97篇
  2007年   109篇
  2006年   95篇
  2005年   104篇
  2004年   111篇
  2003年   94篇
  2002年   72篇
  2001年   46篇
  2000年   47篇
  1999年   54篇
  1998年   26篇
  1997年   23篇
  1996年   16篇
  1995年   17篇
  1994年   20篇
  1993年   19篇
  1992年   45篇
  1991年   33篇
  1990年   36篇
  1989年   35篇
  1988年   20篇
  1987年   32篇
  1986年   14篇
  1985年   22篇
  1984年   15篇
  1983年   13篇
  1982年   10篇
  1981年   12篇
  1978年   6篇
  1977年   5篇
  1976年   7篇
  1974年   9篇
  1973年   7篇
  1971年   5篇
  1969年   5篇
  1967年   5篇
排序方式: 共有2026条查询结果,搜索用时 46 毫秒
121.
The mutations of the SCN5A gene have been implicated to play a pathogenetic role in Brugada syndrome, which causes ventricular fibrillation. To determine the Brugada-associated mutations in Japanese patients, facilitate pre-symptomatic diagnosis, and allow genotype-phenotype studies, we screened unrelated patients with Brugada syndrome for mutations. DNAs from 6 Japanese patients were obtained and the sequence in the translated region of SCN5A was determined. We could not find the mutations reported previously, but found 17 sites of nucleotide change, consisting of 7 synonymous and 10 non-synonymous nucleotide changes in our patients. Among them, two non-synonymous nucleotide changes (G1663A and G5227A) are specific to our patients and these changes were not found in 53 healthy controls. In 4 patients out of 6, no specific nucleotide change for Brugada syndrome could be detected. Our findings demonstrating no patient-specific change in the translated region of the SCN5A gene among two thirds of the small number of patients examined here imply that another gene other than the SCN5A may be associated with this disease, supporting previous investigations in Japan and other countries.  相似文献   
122.
The distribution of theanine-degrading activity in Wistar rats was examined and this activity was detected only in the kidney. Judging from polyacrylamide gel electrophoresis, theanine-degrading enzyme from rat kidney was purified almost to homogeneity. Theanine-degrading activity was co-purified with glutaminase activity, and the relative activity for theanine was about 85% of that for L-glutamine throughout purification. Substrate specificity of purified enzyme preparation coincided well with the data of phosphate-independent glutaminase [EC 3.5.1.2], which had been previously reported. It was very curious that gamma-glutamyl methyl and ethyl esters were more effectively hydrolyzed than theanine and L-glutamine, in view of relative activity and K(m) value. It was suggested that gamma-glutamyl moiety in theanine molecule was transferred to form gamma-glutamylglycylglycine with relative ease in the presence of glycylglycine. On the other hand, purified phosphate-dependent glutaminase did not show theanine-degrading activity at all. Thus, it was concluded that theanine was hydrolyzed by phosphate-independent glutaminase in kidney and suggested that, as for the metabolic fate of theanine, its glutamyl moiety might be transferred by means of gamma-glutamyl transpeptidase reaction to other peptides in vivo.  相似文献   
123.
Kindler syndrome is an autosomal recessive disorder characterized by neonatal blistering, sun sensitivity, atrophy, abnormal pigmentation, and fragility of the skin. Linkage and homozygosity analysis in an isolated Panamanian cohort and in additional inbred families mapped the gene to 20p12.3. Loss-of-function mutations were identified in the FLJ20116 gene (renamed “KIND1” [encoding kindlin-1]). Kindlin-1 is a human homolog of the Caenorhabditis elegans protein UNC-112, a membrane-associated structural/signaling protein that has been implicated in linking the actin cytoskeleton to the extracellular matrix (ECM). Thus, Kindler syndrome is, to our knowledge, the first skin fragility disorder caused by a defect in actin-ECM linkage, rather than keratin-ECM linkage.  相似文献   
124.
A central theme in prion protein research is the detection of the process that underlies the conformational transition from the normal cellular prion form (PrP(C)) to its pathogenic isoform (PrP(Sc)). Although the three-dimensional structures of monomeric and dimeric human prion protein (HuPrP) have been revealed by NMR spectroscopy and x-ray crystallography, the process underlying the conformational change from PrP(C) to PrP(Sc) and the dynamics and functions of PrP(C) remain unknown. The dimeric form is thought to play an important role in the conformational transition. In this study, we performed molecular dynamics (MD) simulations on monomeric and dimeric HuPrP at 300 K and 500 K for 10 ns to investigate the differences in the properties of the monomer and the dimer from the perspective of dynamic and structural behaviors. Simulations were also undertaken with Asp178Asn and acidic pH, which is known as a disease-associated factor. Our results indicate that the dynamics of the dimer and monomer were similar (e.g., denaturation of helices and elongation of the beta-sheet). However, additional secondary structure elements formed in the dimer might result in showing the differences in dynamics and properties between the monomer and dimer (e.g., the greater retention of dimeric than monomeric tertiary structure).  相似文献   
125.
126.
127.
We found previously that the peripheral CD4 T-cell populations of heavily exposed A-bomb survivors contained fewer na?ve T cells than we detected in the corresponding unexposed controls. To determine whether this demonstrable impairment of the CD4 T-cell immunity of A-bomb survivors was likely to affect the responsiveness of their immune systems to infection by common pathogens, we tested the T cells of 723 survivors for their ability to proliferate in vitro after a challenge by each of the Staphylococcus aureus toxins SEB, SEC-2, SEC-3, SEE and TSST-1. The results presented here reveal that the proliferative responses of T cells of A-bomb survivors became progressively weaker as the radiation dose increased and did so in a manner that correlated well with the decreasing CD45RA-positive (na?ve) [but not CD45RA-negative (memory)] CD4 T-cell percentages that we found in their peripheral blood lymphocyte (PBL) populations. We also noted that the T cells of survivors with a history of myocardial infarction tended to respond poorly to several (or even all) of the S. aureus toxins, and that these same individuals had proportionally fewer CD45RA-positive (na?ve) CD4 T cells in their PBL populations than we detected in survivors with no myocardial infarction in their history. Taken together, these results clearly indicate that A-bomb irradiation led to an impairment of the ability of exposed individuals to maintain their na?ve T-cell pools. This may explain why A-bomb survivors tend to respond poorly to toxins encoded by the common pathogenic bacterium S. aureus.  相似文献   
128.
Salts at high concentrations may cause oxidative damage to plant cells since many studies indicated the involvement of reactive oxygen species in salt-stress response. Recently, we have demonstrated that treatment of tobacco ( Nicotiana tabacum ) cell suspension culture with various salts result in an immediate burst of superoxide production via activation of NADPH oxidase by ions of alkali metals (Li+, Na+, K+), alkali earth metals (Mg2+, Ca2+) or lanthanides (La3+, Gd3+). In this study, we tested the effect of extracellular supplementation of Zn2+ and Mn2+ on the cation-induced oxidative burst in tobacco cell suspension culture, measured with a superoxide-specific Cypridina luciferin-derived chemiluminescent reagent. Extracellular supplementation of Zn2+ and Mn2+ inhibited the generation of superoxide in response to addition of salts. Although both Zn2+ and Mn2+ inhibited the salt-induced generation of superoxide, the modes of inhibition by those ions seemed to be different since Mn2+ simply inhibited total production of superoxide while Zn2+ inhibited the early phase of superoxide production and induced the slow release of superoxide. Roles of Mn2+ and Zn2+ in protection of plant cells from salt stress, as an effective superoxide scavenger and an effective inhibitor of plasma membrane-bound NADPH oxidase, respectively, are discussed.  相似文献   
129.
The developmentally regulated gene dofA, identified from pulse-labeling experiments by two-dimensional gel electrophoresis, and its homologue, dofB, were cloned and characterized in Myxococcus xanthus. Deletion of dofA and dofB did not affect the vegetative growth and development of M. xanthus. dofA was specifically expressed during development, while dofB expression was observed during vegetative growth and development. The dofA-lacZ fusion was introduced into a fruA mutant and A, B, C, D, and E extracellular signal mutants. The pattern of dofA expression in the C signal mutant was similar to that of the wild-type strain, while dofA expression was not detected in the fruA mutant. These results are consistent with those of the pulse-labeling experiments. dofA expression was reduced in A and E signal mutants, whereas dofA expression was delayed in B and D signal mutants. The patterns of expression of the dofA gene in the fruA mutant and the five signal mutants are strikingly similar to that of the tps gene, which encodes protein S, a major component of the outer surface of the myxospore; this result suggests that the dofA and tps genes are similarly regulated. The involvement of a highly GC-rich inverted repeat sequence (underlined), CGGCCCCCGATTCGTCGGGGGCCG, in developmentally regulated dofA expression is suggested.  相似文献   
130.
Functional analysis of water channels in barley roots   总被引:1,自引:0,他引:1  
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号