首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1337篇
  免费   86篇
  1423篇
  2021年   14篇
  2019年   10篇
  2018年   17篇
  2017年   17篇
  2016年   22篇
  2015年   30篇
  2014年   38篇
  2013年   84篇
  2012年   66篇
  2011年   52篇
  2010年   43篇
  2009年   45篇
  2008年   51篇
  2007年   62篇
  2006年   45篇
  2005年   37篇
  2004年   45篇
  2003年   50篇
  2002年   49篇
  2001年   49篇
  2000年   49篇
  1999年   48篇
  1998年   11篇
  1997年   18篇
  1996年   8篇
  1995年   13篇
  1994年   12篇
  1993年   13篇
  1992年   29篇
  1991年   39篇
  1990年   50篇
  1989年   38篇
  1988年   32篇
  1987年   30篇
  1986年   29篇
  1985年   27篇
  1984年   13篇
  1983年   9篇
  1982年   11篇
  1981年   9篇
  1979年   8篇
  1978年   7篇
  1976年   7篇
  1975年   7篇
  1971年   5篇
  1970年   10篇
  1969年   10篇
  1968年   9篇
  1967年   8篇
  1966年   6篇
排序方式: 共有1423条查询结果,搜索用时 15 毫秒
941.
942.
In order to elucidate the problem of which cells are involved in calcium transport and to estimate the role of mitochondria in calcium transport in the avian shell gland, the fine structure and the Ca-ATPase, succinate dehydrogenase (SDH) and nicotinamide adenine dinucleotide (NAD+)-dependent isocitrate dehydrogenase (NAD+-ICDH) activity of the shell gland of egg-laying Japanese quails were examined. The surface epithelial cells, consisting of ciliated cells with cilia and microvilli and non-ciliated cells with microvilli, had many large and electron-dense granules. The tubular-gland cells occupied the proprial layer and lacked secretory granules. When an egg was in the shell gland, the well-developed mitochondria of tubular-gland cells characteristically tended to accumulate in the apical cytoplasm, while they were scattered throughout the cytoplasm when an egg was not in the shell gland. Intense Ca-ATPase activity was found on the microvilli of tubular-gland cells, and moderate activity was found on the lateral-cell surface. In the surface epithelial cells, the basolateral cell surface showed moderate enzymatic activity. Both SDH and NAD+-ICDH activity were found in tubular-gland cells when an egg was in the shell gland. These results strongly suggest that calcium for eggshell calcification is actively transported by the tubular-gland (depending on Ca-ATPase activity) and that the mitochondria of gland cells may play an important role in this process as an energy source.  相似文献   
943.
944.
Summary We have previously detected a single base substitution of G by A at the Arg codon CGC in exon 4 of the mutant lactate dehydrogenase (LDH) gene, an unstable LDH-B variant (case 1). Here, we use the polymerase chain reaction (PCR) to amplify genomic DNA of two cases (the original case 1 and a new patient, case 2). We were able to confirm that case 1 is homozygous for the mutation, causing a replacement of the conserved Arg by His at residue 173. The resulting LDH-B variant subunit is unstable in vivo. Whereas the mutation in exon 4 was not observed in case 2, a different single base substitution of A by C was detected at the Ser codon AGT in exon 3. This mutation causes a replacement of the conserved Ser by Arg at residue 131. Genomic analysis of the family of case 2 by mismatched PCR showed that the missense mutation was consistent with their biochemical phenotypes. The replacement results in a conformational change of the residues near the Ser, probably because the side chain of Arg is much more bulky than that of Ser. The change may affect the arrangement of the cofactor binding site and result in the loss of enzyme activity. The experimental observations are consistent with computer graphics analyses.  相似文献   
945.
946.
BackgroundThe effective atomic numbers obtained from dual-energy computed tomography (DECT) can aid in characterization of materials. In this study, an effective atomic number image reconstructed from a DECT image was synthesized using an equivalent single-energy CT image with a deep convolutional neural network (CNN)-based generative adversarial network (GAN).Materials and methodsThe image synthesis framework to obtain the effective atomic number images from a single-energy CT image at 120 kVp using a CNN-based GAN was developed. The evaluation metrics were the mean absolute error (MAE), relative root mean square error (RMSE), relative mean square error (MSE), structural similarity index (SSIM), peak signal-to-noise ratio (PSNR), and mutual information (MI).ResultsThe difference between the reference and synthetic effective atomic numbers was within 9.7% in all regions of interest. The averages of MAE, RMSE, MSE, SSIM, PSNR, and MI of the reference and synthesized images in the test data were 0.09, 0.045, 0.0, 0.89, 54.97, and 1.03, respectively.ConclusionsIn this study, an image synthesis framework using single-energy CT images was constructed to obtain atomic number images scanned by DECT. This image synthesis framework can aid in material decomposition without extra scans in DECT.  相似文献   
947.
Ozawa K  Dixon NE  Otting G 《IUBMB life》2005,57(9):615-622
Modern cell-free in vitro protein synthesis systems present powerful tools for the synthesis of isotope-labeled proteins in high yields. The production of selectively 15 N-labeled proteins from 15 N-labeled amino acids is particularly economic and yields are often sufficient to analyze the proteins very quickly by two-dimensional NMR spectra recorded of the crude reaction mixture without concentration or chromatographic purification of the protein. We review methodological aspects of cell-free in vitro protein synthesis based on an Escherichia coli cell extract, in particular with regard to the production of 15 N-labeled proteins for analysis by NMR spectroscopy.  相似文献   
948.
The consecutive genes BF0771–BF0774 in the genome of Bacteroidesfragilis NCTC 9343 were found to constitute an operon. The functional analysis of BF0772 showed that the gene encoded a novel enzyme, mannosylglucose phosphorylase that catalyzes the reaction, 4-O-β-d-mannopyranosyl-d-glucose + Pi → mannose-1-phosphate + glucose. Here we propose a new mannan catabolic pathway in the anaerobe, which involves 1,4-β-mannanase (BF0771), a mannobiose and/or sugar transporter (BF0773), mannobiose 2-epimerase (BF0774), and mannosylglucose phosphorylase (BF0772), finally progressing to glycolysis. This pathway is distributed in microbes such as Bacteroides, Parabacteroides, Flavobacterium, and Cellvibrio.  相似文献   
949.
The Borna disease virus (BDV) p24 phosphoprotein is an abundant protein in BDV-infected cultured cells and animal brains. Therefore, there is a possibility that binding of the p24 protein to cellular factor(s) induces functional alterations of infected neural cells in the brain. To identify a cellular protein(s) that interacts with BDV p24 protein, we performed far-Western blotting with extracts from various cell lines. Using recombinant p24 protein as a probe, we detected a 30-kDa protein in all cell lines examined. Binding between the 30-kDa and BDV p24 proteins was also demonstrated using BDV p24 affinity and ion-exchange chromatography columns. Microsequence analysis of the purified 30-kDa protein revealed that its N terminus showed complete homology with rat amphoterin protein, which is a neurite outgrowth factor abundant in the brain during development. Mammalian two-hybrid and immunoprecipitation analyses also confirmed that amphoterin is a specific target for the p24 protein in vivo. Furthermore, we showed that infection by BDV, as well as purified p24 protein in the medium, significantly decreased cell process outgrowth of cells grown on laminin, indicating the functional inhibition of amphoterin by interaction with the p24 protein. Immunohistochemical analysis revealed decreased levels of amphoterin protein at the leading edges of BDV-infected cells. Moreover, the expression of the receptor for advanced glycation end products, of which the extracellular moiety is a receptor for amphoterin, was not significantly activated in BDV-infected cells during the process of extension, suggesting that the secretion of amphoterin from the cell surface is inhibited by the binding of the p24 protein. These results suggested that BDV infection may cause direct damage in the developing brain by inhibiting the function of amphoterin due to binding by the p24 phosphoprotein.  相似文献   
950.
SUMOylation is a posttranslational process that attaches a small ubiquitin-like modifier (SUMO) to its target proteins covalently. SUMOylation controls multiple cellular processes through the recognition of SUMO by a SUMO-interacting motif (SIM). In this study, we developed assay systems for detecting noncovalent interactions between SUMO and SIM in cells using split-luciferase complementation. We applied a version of this assay to the detection of in vitro SUMO–SIM interactions using a bacterial expression system. These novel assays enable screening of inhibitors of SUMO-dependent protein–protein interactions, either in vivo or in vitro, in a high-throughput manner.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号