首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1337篇
  免费   85篇
  2021年   14篇
  2019年   10篇
  2018年   17篇
  2017年   17篇
  2016年   22篇
  2015年   30篇
  2014年   38篇
  2013年   84篇
  2012年   66篇
  2011年   52篇
  2010年   43篇
  2009年   45篇
  2008年   51篇
  2007年   62篇
  2006年   45篇
  2005年   37篇
  2004年   45篇
  2003年   50篇
  2002年   49篇
  2001年   49篇
  2000年   49篇
  1999年   48篇
  1998年   11篇
  1997年   18篇
  1996年   8篇
  1995年   13篇
  1994年   12篇
  1993年   13篇
  1992年   29篇
  1991年   39篇
  1990年   50篇
  1989年   38篇
  1988年   32篇
  1987年   30篇
  1986年   29篇
  1985年   27篇
  1984年   13篇
  1983年   9篇
  1982年   11篇
  1981年   9篇
  1979年   8篇
  1978年   7篇
  1976年   7篇
  1975年   7篇
  1971年   5篇
  1970年   10篇
  1969年   10篇
  1968年   9篇
  1967年   8篇
  1966年   6篇
排序方式: 共有1422条查询结果,搜索用时 656 毫秒
331.
Novel hexacyclic camptothecin analogs containing cyclic amidine, urea, or thiourea moiety were designed and synthesized based on the proposed 3D-structure of the topoisomerase I (Topo I)/DNA/camptothecin ternary complex. The analogs were prepared from 9-nitrocamptothecin via 7,9-diaminocamptothecin derivatives as a key intermediate. Among them, 7c exhibited in vivo antitumor activities superior to CPT-11 in human cancer xenograft models in mice at their maximum tolerated doses though its in vitro antiproliferative activity was comparable to SN-38 against corresponding cell lines.  相似文献   
332.
In drug discovery, the occurrence of false positives is a major hurdle in the search for lead compounds that can be developed into drugs. A small-molecular-weight compound that inhibits dengue virus protease at low micromolar levels was identified in a screening campaign. Binding to the enzyme was confirmed by isothermal titration calorimetry (ITC) and nuclear magnetic resonance (NMR). However, a structure–activity relationship study that ensued did not yield more potent leads. To further characterize the parental compound and its analogues, we developed a high-speed, low-cost, quantitative fluorescence quenching assay. We observed that specific analogues quenched dengue protease fluorescence and showed variation in IC50 values. In contrast, nonspecifically binding compounds did not quench its fluorescence and showed similar IC50 values with steep dose–response curves. We validated the assay using single Trp-to-Ala protease mutants and the competitive protease inhibitor aprotinin. Specific compounds detected in the binding assay were further analyzed by competitive ITC, NMR, and surface plasmon resonance, and the assay’s utility in comparison with these biophysical methods is discussed. The sensitivity of this assay makes it highly useful for hit finding and validation in drug discovery. Furthermore, the technique can be readily adapted for studying other protein–ligand interactions.  相似文献   
333.
Type III polyketide synthases (PKSs) synthesize a variety of aromatic polyketides in plants, fungi, and bacteria. The bacterial genome projects predicted that probable type III PKS genes are distributed in a wide variety of gram-positive and -negative bacteria. The gram-positive model microorganism Bacillus subtilis contained the bcsA-ypbQ operon, which appeared to encode a type III PKS and a methyltransferase, respectively. Here, we report the characterization of bcsA (renamed bpsA, for Bacillus pyrone synthase, on the basis of its function) and ypbQ, which are involved in the biosynthesis of aliphatic polyketides. In vivo analysis demonstrated that BpsA was a type III PKS catalyzing the synthesis of triketide pyrones from long-chain fatty acyl-coenzyme A (CoA) thioesters as starter substrates and malonyl-CoA as an extender substrate, and YpbQ was a methyltransferase acting on the triketide pyrones to yield alkylpyrone methyl ethers. YpbQ thus was named BpsB because of its functional relatedness to BpsA. In vitro analysis with histidine-tagged BpsA revealed that it used broad starter substrates and produced not only triketide pyrones but also tetraketide pyrones and alkylresorcinols. Although the aliphatic polyketides were expected to localize in the membrane and play some role in modulating the rigidity and properties of the membrane, no detectable phenotypic changes were observed for a B. subtilis mutant containing a whole deletion of the bpsA-bpsB operon.Type III polyketide synthases (PKSs), represented by a plant chalcone synthase (CHS), are the condensing enzymes that catalyze the synthesis of aromatic polyketides in plants, fungi, and bacteria (2). CHS catalyzes the decarboxylative condensation of p-coumaroyl-coenzyme A (p-coumaroyl-CoA), called a starter substrate, with three malonyl-CoAs, called extender substrates, and synthesizing a tetraketide intermediate. The synthesized tetraketide intermediate was cyclized and aromatized by CHS and resulted in naringenin chalcone. Like CHS, most of the type III PKSs catalyze the condensation of a starter substrate with several molecules of an extender substrate and cyclization. There are many type III PKSs that differ in these specificities.Until recently, type III PKSs were discovered only from plants. In 1999, the first bacterial type III PKS, RppA, was discovered. RppA catalyzes the condensation of five malonyl-CoAs to synthesize 1,3,6,8-tetrahydroxynaphthalene, which is a precursor of hexahydroxyperylenequinone melanin in the actinomycete Streptomyces griseus (4). Since then, the genome projects of various bacteria have revealed that type III PKSs are widely distributed in a variety of bacteria. For example, ArsB and ArsC, both of which are type III PKSs in Azotobacter vinelandii, catalyze the synthesis of alkylresorcinols and alkylpyrones, respectively, which are essential for encystment as the major lipids in the cyst membrane (5). In S. griseus, the srs operon consisting of srsA, srsB, and srsC is responsible for the synthesis of methylated phenolic lipids derived from alkylresorcinols and alkylpyrones (6). The function of each of the operon members is that SrsA is a type III PKS responsible for the synthesis of phenolic lipids alkylresorcinol and alkylpyrones, SrsB is a methyltransferase acting on the phenolic lipids to yield alkylresorcinol methyl ethers, and SrsC is a hydroxylase acting on the alkylresorcinol methyl ethers. The phenolic lipids synthesized by the Srs enzymes confer resistance to β-lactam antibiotics (6). Therefore, it is suggested that phenolic lipids play an important role as minor components in the biological membrane in various bacteria. In fact, srsAB- and srsABC-like operons are distributed widely in both gram-positive and -negative bacteria (see Fig. S1 in the supplemental material). However, most of these type III PKSs have not been characterized.Bacillus subtilis is one of the best-characterized gram-positive bacteria. BcsA, which stands for bacterial chalcone synthase, was annotated as a homologue of type III PKS in B. subtilis (3). As described in this paper, however, this annotation needs correction. We renamed the gene bpsA (for Bacillus pyrone synthase). Moreover, the functional unknown gene ypbQ is located next to bpsA. YpbQ, consisting of 168 amino acid residues, contained an isoprenylcysteine carboxyl methyltransferase (ICMT) domain of the ICMT family members, which are unique membrane proteins that are involved in the posttranslational modification of oncogenic proteins (23). Therefore, the bpsA and ypbQ genes were predicted to form an operon, just like srsA and srsB in the srs operon in S. griseus. We therefore named ypbQ, a thus-far functionally unknown gene, bpsB.In this study, we characterized the functions of BpsA and BpsB by in vivo and in vitro experiments. The in vivo experiments revealed that the overexpression of bpsA in B. subtilis led to the production of triketide pyrones, and the co-overexpression of bpsA and bpsB led to the production of triketide pyrone methyl ethers. The in vitro analysis showed that BpsA produced triketide pyrones and a small amount of tetraketide pyrones and tetraketide resorcinols from long-chain fatty acyl CoA thioesters as starter substrates and malonyl-CoA as an extender substrate. Therefore, BpsA is a type III PKS that is responsible for the synthesis of alkylpyrones, and BpsB is a methyltransferase that acts on the alkylpyrones to yield alkylpyrone methyl ethers. BpsB is the first enzyme found to methylate alkylpyrones. Furthermore, we attempted to analyze the biological function of the aliphatic polyketides by disrupting the bpsA and bpsB genes, but no distinct phenotypic changes were detected under laboratory conditions.  相似文献   
334.
335.
Ycf4 is a thylakoid protein essential for the accumulation of photosystem I (PSI) in Chlamydomonas reinhardtii. Here, a tandem affinity purification tagged Ycf4 was used to purify a stable Ycf4-containing complex of >1500 kD. This complex also contained the opsin-related COP2 and the PSI subunits PsaA, PsaB, PsaC, PsaD, PsaE, and PsaF, as identified by mass spectrometry (liquid chromatography–tandem mass spectrometry) and immunoblotting. Almost all Ycf4 and COP2 in wild-type cells copurified by sucrose gradient ultracentrifugation and subsequent ion exchange column chromatography, indicating the intimate and exclusive association of Ycf4 and COP2. Electron microscopy revealed that the largest structures in the purified preparation measure 285 × 185 Å; these particles may represent several large oligomeric states. Pulse-chase protein labeling revealed that the PSI polypeptides associated with the Ycf4-containing complex are newly synthesized and partially assembled as a pigment-containing subcomplex. These results indicate that the Ycf4 complex may act as a scaffold for PSI assembly. A decrease in COP2 to 10% of wild-type levels by RNA interference increased the salt sensitivity of the Ycf4 complex stability but did not affect the accumulation of PSI, suggesting that COP2 is not essential for PSI assembly.  相似文献   
336.
337.
Although somatic cell nuclear transfer (NT) and in vitro fertilization (IVF) have the potential to produce genetically superior livestock, considerable numbers of abnormally large animals, including sheep and cattle affected by "large offspring syndrome" (LOS), have been produced by these assisted reproductive technologies (ART). Interestingly, these phenotypes are reminiscent of Beckwith-Wiedemann syndrome (BWS) in humans, which is an imprinting disorder characterized by pre- and/or postnatal overgrowth. The imprinting control region KvDMR1, which regulates the coordinated expression of growth control genes such as Cdkn1c, is known to be aberrantly hypomethylated in BWS. Therefore, we hypothesized that aberrant imprinting in this region could contribute to LOS. In this study, we analyzed the DNA methylation status of the Kcnq1ot1/Cdkn1c and Igf2/H19 domains on bovine chromosome 29 and examined the coordinated expression of imprinted genes surrounding them in seven calves derived by NT (which showed signs of developmental abnormality), two calves conceived by IVF (both developmentally abnormal), and three conventional calves that died of unrelated causes. Abnormal hypomethylation status at an imprinting control region of Kcnq1ot1/Cdkn1c domain was observed in two of seven NT-derived calves and one of two IVF-derived calves in almost all organs. Moreover, increased expression of Kcnq1ot1 and diminished expression of Cdkn1c were observed by RT-PCR analysis. This study is the first to describe the abnormal hypomethylation of the KvDMR1 domain and subsequent changes in the gene expression of Kcnq1ot1 and Cdkn1c in a subset of calves produced by ART. Our findings provide strong evidence for a role of altered imprinting control in the development of LOS in bovines.  相似文献   
338.
339.
Photosystem I (PSI) is a multiprotein complex consisting of the PSI core and peripheral light-harvesting complex I (LHCI) that together form the PSI-LHCI supercomplex in algae and higher plants. The supercomplex is synthesized in steps during which 12–15 core and 4–9 LHCI subunits are assembled. Here we report the isolation of a PSI subcomplex that separated on a sucrose density gradient from the thylakoid membranes isolated from logarithmic growth phase cells of the green alga Chlamydomonas reinhardtii. Pulse-chase labeling of total cellular proteins revealed that the subcomplex was synthesized de novo within 1 min and was converted to the mature PSI-LHCI during the 2-h chase period, indicating that the subcomplex was an assembly intermediate. The subcomplex was functional; it photo-oxidized P700 and demonstrated electron transfer activity. The subcomplex lacked PsaK and PsaG, however, and it bound PsaF and PsaJ weakly and was not associated with LHCI. It seemed likely that LHCI had been integrated into the subcomplex unstably and was dissociated during solubilization and/or fractionation. We, thus, infer that PsaK and PsaG stabilize the association between PSI core and LHCI complexes and that PsaK and PsaG bind to the PSI core complex after the integration of LHCI in one of the last steps of PSI complex assembly.  相似文献   
340.
Autism spectrum disorders (ASDs) have garnered significant attention as an important grouping of developmental brain disorders. Recent genomic studies have revealed that inherited or de novo copy number variations (CNVs) are significantly involved in the pathophysiology of ASDs. In a previous report from our laboratory, we generated mice with CNVs as a model of ASDs, with a duplicated mouse chromosome 7C that is orthologous to human chromosome 15q11-13. Behavioral analyses revealed paternally duplicated (patDp/+) mice displayed abnormal behaviors resembling the symptoms of ASDs. In the present study, we extended these findings by performing various behavioral tests with C57BL/6J patDp/+ mice, and comprehensively measuring brain monoamine levels with ex vivo high performance liquid chromatography. Compared with wild-type controls, patDp/+ mice exhibited decreased locomotor and exploratory activities in the open field test, Y-maze test, and fear-conditioning test. Furthermore, their decreased activity levels overcame increased appetite induced by 24 hours of food deprivation in the novelty suppressed feeding test. Serotonin levels in several brain regions of adult patDp/+ mice were lower than those of wild-type control, with no concurrent changes in brain levels of dopamine or norepinephrine. Moreover, analysis of monoamines in postnatal developmental stages demonstrated reduced brain levels of serotonin in young patDp/+ mice. These findings suggest that a disrupted brain serotonergic system, especially during postnatal development, may generate the phenotypes of patDp/+ mice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号