首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1035篇
  免费   48篇
  国内免费   1篇
  2022年   7篇
  2021年   13篇
  2020年   15篇
  2019年   12篇
  2018年   17篇
  2017年   18篇
  2016年   21篇
  2015年   49篇
  2014年   38篇
  2013年   71篇
  2012年   94篇
  2011年   91篇
  2010年   63篇
  2009年   50篇
  2008年   77篇
  2007年   74篇
  2006年   66篇
  2005年   65篇
  2004年   67篇
  2003年   71篇
  2002年   63篇
  2001年   6篇
  2000年   2篇
  1999年   4篇
  1998年   6篇
  1997年   3篇
  1996年   8篇
  1995年   7篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
排序方式: 共有1084条查询结果,搜索用时 15 毫秒
211.

Key message

Greatest potential, QTLs for hypoxia and waterlogging tolerance in soybean roots were detected using a new phenotypic evaluation method.

Abstract

Waterlogging is a major environmental stress limiting soybean yield in wet parts of the world. Root development is an important indicator of hypoxia tolerance in soybean. However, little is known about the genetic control of root development under hypoxia. This study was conducted to identify quantitative trait loci (QTLs) responsible for root development under hypoxia. Recombinant inbred lines (RILs) developed from a cross between a hypoxia-sensitive cultivar, Tachinagaha, and a tolerant landrace, Iyodaizu, were used. Seedlings were subjected to hypoxia, and root development was evaluated with the value change in root traits between after and before treatments. We found 230 polymorphic markers spanning 2519.2 cM distributed on all 20 chromosomes (Chrs.). Using these, we found 11 QTLs for root length (RL), root length development (RLD), root surface area (RSA), root surface area development (RSAD), root diameter (RD), and change in average root diameter (CARD) on Chrs. 11, 12, 13 and 14, and 7 QTLs for hypoxia tolerance of these root traits. These included QTLs for RLD and RSAD between markers Satt052 and Satt302 on Chr. 12, which are important markers of hypoxia tolerance in soybean; those QTLs were stable between 2 years. To validate the QTLs, we developed a near-isogenic line with the QTL region derived from Iyodaizu. The line performed well under both hypoxia and waterlogging, suggesting that the region contains one or more genes with large effects on root development. These findings may be useful for fine mapping and positional cloning of gene responsible for root development under hypoxia.
  相似文献   
212.
Exercise dramatically increases oxygen consumption and causes oxidative stress. Superoxide dismutase (SOD) is important in the first-line defence mechanisms against oxidative stress. To investigate the effect of acute exercise on the expression of SOD, we examined the expression of mRNA for three SOD isozymes, in mice run on a treadmill to exhaustion. Six hours after exercise, the expression of extracellular SOD (EC-SOD) mRNA increased significantly in skeletal muscle and persisted for 24 h, whereas no change was observed for cytoplasmic and mitochondrial SOD mRNA. Moreover, acute exercise also induced EC-SOD mRNA in the aorta. These results suggest that a single bout of exercise is enough to augment the expression EC-SOD mRNA in skeletal muscle and the aorta, and may partly explain the beneficial effect of exercise.  相似文献   
213.
214.
High-performance liquid chromatographic determination of four short-chain aliphatic aldehydes using fluorescence detection was carried out with 4-(N,N-dimethylaminosulphonyl)-7-hydrazino-2,1,3-benzoxadiazole (DBD-H). DBD-H derivatives with three aliphatic aldehydes — formaldehyde, acetaldehyde and propionaldehyde — were synthesized and their fluorescence properties were examined. Relative fluorescence intensities of these compounds in acetonitrile were ca. ten-fold larger than those in aqueous acetonitrile. DBD-hydrazones could be separated by reversed-phase chromatography using aqueous acetonitrile as eluent and detection at 560 nm with excitation at 445 nm. Submicromolar levels of formaldehyde, acetaldehyde, propionaldehyde and butylaldehyde could be determined. The HPLC procedure using propionaldehyde as internal standard was applied to the measurement of acetaldehyde levels in normal human plasma before and 30 min after ingestion of ethanol.  相似文献   
215.
The senescence-accelerated mouse prone 8 (SAMP8) strain exhibits age-related learning and memory deficits (LMD) at 2 months of age. Combined linkage analysis of 264 F2 intercross SAMP8 × JF1 mice and RNA-seq analysis identified Hcn1 gene out of 29 genes in the LMD region on chromosome 13. Hcn1 in SAMP8 strain showed 15 times less polyglutamine repetition compared to Japanese fancy mouse 1 (JF1). Whole cell patch clamp analysis showed that Hcn1 ion conductivity was significantly lower in SAMP8 compared to that of JF1, which may be associated with learning and memory deficiency.  相似文献   
216.
Arginine is a precursor for the synthesis of urea, polyamines, creatine phosphate, nitric oxide and proteins. It is synthesized from ornithine by argininosuccinate synthetase and argininosuccinate lyase and is degraded by arginase, which consists of a liver-type (arginase I) and a non-hepatic type (arginase II). Recently, cDNAs for human and rat arginase II have been isolated. In this study, immunocytochemical analysis showed that human arginase II expressed in COS-7 cells was localized in the mitochondria. Arginase II mRNA was abundant in the rat small intestine and kidney. In the kidney, argininosuccinate synthetase and lyase were immunostained in the cortex, intensely in proximal tubules and much less intensely in distal tubules. In contrast, arginase II was stained intensely in the outer stripes of the outer medulla, presumably in the proximal straight tubules, and in a subpopulation of the proximal tubules in the cortex. Immunostaining of serial sections of the kidney showed that argininosuccinate synthetase and arginase II were collocalized in a subpopulation of proximal tubules in the cortex, whereas only the synthetase, but not arginase II, was present in another subpopulation of proximal tubules. In the liver, all the enzymes of the urea cycle, i.e. carbamylphosphate synthetase I, ornithine transcarbamylase, argininosuccinate synthetase and lyase and arginase I, showed similar zonation patterns with staining more intense in periportal hepatocytes than in pericentral hepatocytes, although zonation of ornithine transcarbamylase was much less prominent. The implications of these results are discussed.  相似文献   
217.
218.
Phase changes in Bacteroides fragilis, a member of the human colonic microbiota, mediate variations in a vast array of cell surface molecules, such as capsular polysaccharides and outer membrane proteins through DNA inversion. The results of the present study show that outer membrane vesicle (OMV) formation in this anaerobe is also controlled by DNA inversions at two distantly localized promoters, IVp-I and IVp-II that are associated with extracellular polysaccharide biosynthesis and the expression of outer membrane proteins. These promoter inversions are mediated by a single tyrosine recombinase encoded by BF2766 (orthologous to tsr19 in strain NCTC9343) in B. fragilis YCH46, which is located near IVp-I. A series of BF2766 mutants were constructed in which the two promoters were locked in different configurations (IVp-I/IVp-II = ON/ON, OFF/OFF, ON/OFF or OFF/ON). ON/ON B. fragilis mutants exhibited hypervesiculating, whereas the other mutants formed only a trace amount of OMVs. The hypervesiculating ON/ON mutants showed higher resistance to treatment with bile, LL-37, and human β-defensin 2. Incubation of wild-type cells with 5% bile increased the population of cells with the ON/ON genotype. These results indicate that B. fragilis regulates the formation of OMVs through DNA inversions at two distantly related promoter regions in response to membrane stress, although the mechanism underlying the interplay between the two regions controlled by the invertible promoters remains unknown.  相似文献   
219.
In the present study, we investigated mammalian polymerases that consecutively incorporate various fluorophore-labeled nucleotides. We found that rat DNA polymerase β (pol β) consecutively incorporated fluorophore-labeled nucleotides to a greater extent than four bacterial polymerases, Sequenase Version 2.0, VentR (exo-), DNA polymerase IIIα and the Klenow fragment, and the mammalian polymerases DNA polymerase α and human DNA polymerase δ, under mesophilic conditions. Furthermore, we investigated the kinetics of correct or mismatched incorporation with labeled nucleotides during synthesis by rat pol β. The kinetic parameters Km and kcat were measured and used for evaluating: (i) the discrimination against correct pair incorporation of labeled nucleotides relative to unlabeled nucleotides; and (ii) the fidelity for all nucleotide combinations of mismatched pairs in the presence of labeled or unlabeled nucleotides. We also investigated the effect of fluorophore-labeled nucleotides on terminal deoxynucleotidyl transferase activity of rat pol β. We have demonstrated for the first time that mammalian pol β can consecutively incorporate various fluorophore-labeled dNTPs. These findings suggest that pol β is useful for high-density labeling of DNA probes and single-molecule sequencing for high-speed genome analysis.  相似文献   
220.
Li X  Wang J  Li W  Xu Y  Shao D  Xie Y  Xie W  Kubota T  Narimatsu H  Zhang Y 《Glycobiology》2012,22(5):602-615
The first step of mucin-type O-glycosylation is catalyzed by members of the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase (ppGalNAc-T; EC 2.4.1.41) family. Each member of this family has unique substrate specificity and expression profiles. In this report, we describe a new subfamily of ppGalNAc-Ts, designated the Y subfamily. The Y subfamily consists of four members, ppGalNAc-T8, -T9, -T17 and -T18, in which the conserved YDX(5)WGGENXE sequence in the Gal/GalNAc-T motif of ppGalNAc-Ts is mutated to LDX(5)YGGENXE. Phylogenetic analysis revealed that the Y subfamily members only exist in vertebrates. All four Y subfamily members lack in vitro GalNAc-transferase activity toward classical substrates possibly because of the UDP-GalNAc-binding pocket mutants. However, ppGalNAc-T18, the newly identified defining member, was localized in the endoplasmic reticulum rather than the Golgi apparatus in lung carcinoma cells. The knockdown of ppGalNAc-T18 altered cell morphology, proliferation potential and changed cell O-glycosylation. ppGalNAc-T18 can also modulate the in vitro GalNAc-transferase activity of ppGalNAc-T2 and -T10, suggesting that it may be a chaperone-like protein. These findings suggest that the new Y subfamily of ppGalNAc-Ts plays an important role in protein glycosylation; characterizing their functions will provide new insight into the role of ppGalNAc-Ts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号