全文获取类型
收费全文 | 305篇 |
免费 | 30篇 |
专业分类
335篇 |
出版年
2020年 | 3篇 |
2019年 | 1篇 |
2018年 | 1篇 |
2017年 | 1篇 |
2016年 | 4篇 |
2015年 | 13篇 |
2014年 | 4篇 |
2013年 | 8篇 |
2012年 | 18篇 |
2011年 | 14篇 |
2010年 | 15篇 |
2009年 | 9篇 |
2008年 | 18篇 |
2007年 | 8篇 |
2006年 | 12篇 |
2005年 | 12篇 |
2004年 | 17篇 |
2003年 | 21篇 |
2002年 | 12篇 |
2001年 | 16篇 |
2000年 | 19篇 |
1999年 | 12篇 |
1998年 | 10篇 |
1997年 | 6篇 |
1996年 | 8篇 |
1995年 | 1篇 |
1994年 | 4篇 |
1993年 | 6篇 |
1992年 | 6篇 |
1991年 | 3篇 |
1990年 | 2篇 |
1989年 | 8篇 |
1988年 | 7篇 |
1987年 | 5篇 |
1986年 | 4篇 |
1985年 | 3篇 |
1984年 | 3篇 |
1983年 | 2篇 |
1982年 | 4篇 |
1981年 | 1篇 |
1980年 | 1篇 |
1979年 | 1篇 |
1978年 | 1篇 |
1976年 | 1篇 |
1975年 | 1篇 |
1974年 | 3篇 |
1971年 | 2篇 |
1969年 | 1篇 |
1968年 | 1篇 |
1960年 | 1篇 |
排序方式: 共有335条查询结果,搜索用时 12 毫秒
71.
Emi Sakuno Ying Wen Hidemi Hatabayashi Hatsue Arai Chiemi Aoki Kimiko Yabe Hiromitsu Nakajima 《Applied microbiology》2005,71(6):2999-3006
In the aflatoxin biosynthetic pathway, 5′-oxoaverantin (OAVN) cyclase, the cytosolic enzyme, catalyzes the reaction from OAVN to (2′S,5′S)-averufin (AVR) (E. Sakuno, K. Yabe, and H. Nakajima, Appl. Environ. Microbiol. 69:6418-6426, 2003). Interestingly, the N-terminal 25-amino-acid sequence of OAVN cyclase completely matched an internal sequence of the versiconal (VHOH) cyclase that was deduced from its gene (vbs). The purified OAVN cyclase also catalyzed the reaction from VHOH to versicolorin B (VB). In a competition experiment using the cytosol fraction of Aspergillus parasiticus, a high concentration of VHOH inhibited the enzyme reaction from OAVN to AVR, and instead VB was newly formed. The recombinant Vbs protein, which was expressed in Pichia pastoris, showed OAVN cyclase activity, as well as VHOH cyclase activity. A mutant of A. parasiticus SYS-4 (= NRRL 2999) with vbs deleted accumulated large amounts of OAVN, 5′-hydroxyaverantin, averantin, AVR, and averufanin in the mycelium. These results indicated that the cyclase encoded by the vbs gene is also involved in the reaction from OAVN to AVR in aflatoxin biosynthesis. Small amounts of VHOH, VB, and aflatoxins also accumulated in the same mutant, and this accumulation may have been due to an unknown enzyme(s) not involved in aflatoxin biosynthesis. This is the first report of one enzyme catalyzing two different reactions in a pathway of secondary metabolism. 相似文献
72.
Recent studies demonstrate co-localization of kinesin with neurofilament (NF) subunits in culture and suggest that kinesin participates in NF subunit distribution. We sought to determine whether kinesin was also associated with NF subunits in situ. Axonal transport of NF subunits in mouse optic nerve was perturbed by the microtubule (MT)-depolymerizing drug vinblastine, indicating that NF transport was dependent upon MT dynamics. Kinesin co-precipitated during immunoprecipitation of NF subunits from optic nerve. The association of NFs and kinesin was regulated by NF phosphorylation, since (1) NF subunits bearing developmentally delayed phospho-epitopes did not co-purify in a microtubule motor preparation from CNS while less phosphorylated forms did; (2) subunits bearing these phospho-epitopes were selectively not co-precipitated with kinesin; and (3) phosphorylation under cell-free conditions diminished the association of NF subunits with kinesin. The nature and extent of this association was further examined by intravitreal injection of (35)S-methionine and monitoring NF subunit transport along optic axons. As previously described by several laboratories, the wave of NF subunits underwent a progressive broadening during continued transport. The front, but not the trail, of this broadening wave of NF subunits was co-precipitated with kinesin, indicating that (1) the fastest-moving NFs were associated with kinesin, and (2) that dissociation from kinesin may foster trailing of NF subunits during continued transport. These data suggest that kinesin participates in NF axonal transport either by directly translocating NFs and/or by linking NFs to transporting MTs. Both Triton-soluble as well as cytoskeleton-associated NF subunits were co-precipitated with kinesin; these data are considered in terms of the form(s) in which NF subunits undergo axonal transport. 相似文献
73.
Sialic acid represents a critical sugar component located at the outermost position of glycoconjugates, playing important roles in extensive biological processes. To date, however, there have been only few probes which show affinity to α(2,3)-linked sialic acid-containing glycoconjugates. Agrocybe cylindracea galectin is known to have a relatively high affinity towards Neu5Acα(2,3)Galβ(1,4)Glc (3'-sialyl lactose), but it significantly recognizes various β-galactosides, such as Galβ(1,4)GlcNAcβ (LacNAc) and Galβ(1,3)GalNAcα (T-antigen). To eliminate this background specificity, we focused an acidic amino acid residue (Glu86), which interacts with the glucose unit of 3'-sialyl lactose and substituted it with all other amino acids. Carbohydrate-binding specificity of the derived 14 mutants was analysed by surface plasmon resonance, and it was found that E86D mutant (Glu86 substituted with Asp) substantially lost the binding ability to LacNAc and T-antigen, while it retained the high affinity for 3'-sialyl lactose. Further, frontal affinity chromatography analysis using 132 pyridylaminated oligosaccharides confirmed that the E86D mutant had a strong preference for α(2,3)-disialo biantennary N-linked glycan. However, it showed the large decrease in the affinity for any of the asialo complex-type N-glycans and the glycolipid-type glycans. Thus, the developed mutant E86D will be of practical use in various fields relevant to cell biology and glycotechnology. 相似文献
74.
A new cottid species,Icelus ecornis, is described on the basis of 31 specimens collected from 159–226 m in the southwestern Okhotsk Sea off Hokkaido, Japan.
It is distinguished from all other members of the genusIcelus by the following combination of characters: no supraocular and parietal spines; short blunt nuchal spine; cirri absent from
head and body, except for supraocular, parietal and nuchal regions; platelike scales of dorsal row bearing 6–10 long uniform
spinules; tubular lateral line scales bearing small spines on dorsal and posterior margins; large oval black spot on first
dorsal fin; 16–20 anal fin rays. 相似文献
75.
HKR1 encodes a cell surface protein that regulates both cell wall beta-glucan synthesis and budding pattern in the yeast Saccharomyces cerevisiae. 总被引:2,自引:1,他引:2 下载免费PDF全文
T Yabe T Yamada-Okabe S Kasahara Y Furuichi T Nakajima E Ichishima M Arisawa H Yamada-Okabe 《Journal of bacteriology》1996,178(2):477-483
We previously isolated the Saccharomyces cerevisiae HKR1 gene that confers on S. cerevisiae cells resistance to HM-1 killer toxin secreted by Hansenula mrakii (S. Kasahara, H. Yamada, T. Mio, Y. Shiratori, C. Miyamoto, T. Yabe, T. Nakajima, E. Ichishima, and Y. Furuichi, J. Bacteriol. 176:1488-1499, 1994). HKR1 encodes a type 1 membrane protein that contains a calcium-binding consensus sequence (EF hand motif) in the cytoplasmic domain. Although the null mutation of HKR1 is lethal, disruption of the 3' part of the coding region, which would result in deletion of the cytoplasmic domain of Hkr1p, did not affect the viability of yeast cells. This partial disruption of HKR1 significantly reduced beta-1,3-glucan synthase activity and the amount of beta-1,3-glucan in the cell wall and altered the axial budding pattern of haploid cells. Neither chitin synthase activity nor chitin content was significantly affected in the cells harboring the partially disrupted HKR1 allele. Immunofluorescence microscopy with an antibody raised against Hkr1p expressed in Escherichia coli revealed that Hkr1p was predominantly localized on the cell surface. The cell surface localization of Hkr1p required the N-terminal signal sequence because the C-terminal half of Hkr1p was detected uniformly in the cells. These results demonstrate that HKR1 encodes a cell surface protein that regulates both cell wall beta-glucan synthesis and budding pattern and suggest that bud site assembly is somehow related to beta-glucan synthesis in S. cerevisiae. 相似文献
76.
Cloning and Characterization of the O-Methyltransferase I Gene (dmtA) from Aspergillus parasiticus Associated with the Conversions of Demethylsterigmatocystin to Sterigmatocystin and Dihydrodemethylsterigmatocystin to Dihydrosterigmatocystin in Aflatoxin Biosynthesis 总被引:1,自引:0,他引:1 下载免费PDF全文
Marisa Motomura Naomi Chihaya Takao Shinozawa Takashi Hamasaki Kimiko Yabe 《Applied microbiology》1999,65(11):4987-4994
O-Methyltransferase I catalyzes both the conversion of demethylsterigmatocystin to sterigmatocystin and the conversion of dihydrodemethylsterigmatocystin to dihydrosterigmatocystin during aflatoxin biosynthesis. In this study, both genomic cloning and cDNA cloning of the gene encoding O-methyltransferase I were accomplished by using PCR strategies, such as conventional PCR based on the N-terminal amino acid sequence of the purified enzyme, 5′ and 3′ rapid amplification of cDNA ends PCR, and thermal asymmetric interlaced PCR (TAIL-PCR), and genes were sequenced by using Aspergillus parasiticus NIAH-26. A comparison of the genomic sequences with the cDNA of the dmtA region revealed that the coding region is interrupted by three short introns. The cDNA of the dmtA gene is 1,373 bp long and encodes a 386-amino-acid protein with a deduced molecular weight of 43,023, which is consistent with the molecular weight of the protein determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The C-terminal half of the deduced protein exhibits 76.3% identity with the coding region of the Aspergillus nidulans StcP protein, whereas the N-terminal half of dmtA exhibits 73.0% identity with the 5′ flanking region of the stcP gene, suggesting that translation of the stcP gene may start at a site upstream from methionine that is different from the site that has been suggested previously. Also, an examination of the 5′ and 3′ flanking regions of the dmtA gene in which TAIL-PCR was used demonstrated that the dmtA gene is located in the aflatoxin biosynthesis cluster between (and in the same orientation as) the omtA and ord-2 genes. Northern blotting revealed that expression of the dmtA gene is influenced by both medium composition and culture temperature and that the pattern correlates with the patterns observed for other genes in the aflatoxin gene cluster. Furthermore, Southern blotting and PCR analyses of the dmtA gene showed that a dmtA homolog is present in Aspergillus oryzae SYS-2. 相似文献
77.
Yabe I Horiuchi K Nakahara K Hiyama T Yamanaka T Wang PC Toda K Hirata A Ohsumi Y Hirata R Anraku Y Kusaka I 《The Journal of biological chemistry》1999,274(49):34903-34910
A method for obtaining giant protoplasts of Escherichia coli (the spheroplast incubation (SI) method: Kuroda et al. (Kuroda, T., Okuda, N., Saitoh, N., Hiyama, T., Terasaki, Y., Anazawa, H., Hirata, A., Mogi, T., Kusaka, I., Tsuchiya, T., and Yabe, I. (1998) J. Biol. Chem. 273, 16897-16904) was adapted to haploid cells of Saccharomyces cerevisiae. The yeast cell grew to become as large as 20 micrometer in diameter and to contain an oversized vacuole inside. A patch clamp technique in the whole cell/vacuole recording mode was applied for the vacuole isolated by osmotic shock. At zero membrane potential, ATP induced a strong current (as high as 100 pA; specific activity, 0.1 pA/micrometer(2)) toward the inside of the vacuole. Bafilomycin A(1,) a specific inhibitor of the V-type ATPase, strongly inhibited the activity (K(i) = 10 nM). Complete inhibition at higher concentrations indicated that any other ATP-driven transport systems were not expressed under the present incubation conditions. This current was not observed in the vacuoles prepared from a mutant that disrupted a catalytic subunit of the V-type ATPase (RH105(Deltavma1::TRP)). The K(m) value for the ATP dose response of the current was 159 microM and the H(+)/ATP ratio estimated from the reversible potential of the V-I curve was 3.5 +/- 0.3. These values agreed well with those previously estimated by measuring the V-type ATPase activity biochemically. This method can potentially be applied to any type of ion channel, ion pump, and ion transporter in S. cerevisiae, and can also be used to investigate gene functions in various organisms by using yeast cells as hosts for homologous and heterogeneous expression systems. 相似文献
78.
During aflatoxin biosynthesis, 5'-hydroxyaverantin (HAVN) is converted to averufin (AVR). Although we had previously suggested that this occurs in one enzymatic step, we demonstrate here that this conversion is composed of two enzymatic steps by showing that the two enzyme activities in the cytosol fraction of Aspergillus parasiticus were clearly separated by Mono Q column chromatography. An enzyme, HAVN dehydrogenase, catalyzes the first reaction from HAVN to a novel intermediate, another new enzyme catalyzes the next reaction from the intermediate to AVR, and the intermediate is a novel substance, 5'-oxoaverantin (OAVN), which was determined by physicochemical methods. We also purified both of the enzymes, HAVN dehydrogenase and OAVN cyclase, from the cytosol fraction of A. parasiticus by using ammonium sulfate fractionation and successive chromatographic steps. The HAVN dehydrogenase is a homodimer composed of 28-kDa subunits, and it requires NAD, but not NADP, as a cofactor for its activity. Matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis of tryptic peptides of the purified HAVN dehydrogenase revealed that this enzyme coincides with a protein deduced from the adhA gene in the aflatoxin gene cluster of A. parasiticus. Also, the OAVN cyclase enzyme is a homodimer composed of 79-kDa subunits which does not require any cofactor for its activity. Further characterizations of both enzymes were performed. 相似文献
79.
Enzymatic Conversion of Averufin to Hydroxyversicolorone and Elucidation of a Novel Metabolic Grid Involved in Aflatoxin Biosynthesis 下载免费PDF全文
Kimiko Yabe Naomi Chihaya Shioka Hamamatsu Emi Sakuno Takashi Hamasaki Hiromitsu Nakajima J. W. Bennett 《Applied microbiology》2003,69(1):66-73
The pathway from averufin (AVR) to versiconal hemiacetal acetate (VHA) in aflatoxin biosynthesis was investigated by using cell-free enzyme systems prepared from Aspergillus parasiticus. When (1′S,5′S)-AVR was incubated with a cell extract of this fungus in the presence of NADPH, versicolorin A and versicolorin B (VB), as well as other aflatoxin pathway intermediates, were formed. When the same substrate was incubated with the microsome fraction and NADPH, hydroxyversicolorone (HVN) and VHA were formed. However, (1′R,5′R)-AVR did not serve as the substrate. In cell-free experiments performed with the cytosol fraction and NADPH, VHA, versicolorone (VONE), and versiconol acetate (VOAc) were transiently produced from HVN in the early phase, and then VB and versiconol (VOH) accumulated later. Addition of dichlorvos (dimethyl 2,2-dichlorovinylphosphate) to the same reaction mixture caused transient formation of VHA and VONE, followed by accumulation of VOAc, but neither VB nor VOH was formed. When VONE was incubated with the cytosol fraction in the presence of NADPH, VOAc and VOH were newly formed, whereas the conversion of VOAc to VOH was inhibited by dichlorvos. The purified VHA reductase, which was previously reported to catalyze the reaction from VHA to VOAc, also catalyzed conversion of HVN to VONE. Separate feeding experiments performed with A. parasiticus NIAH-26 along with HVN, VONE, and versicolorol (VOROL) demonstrated that each of these substances could serve as a precursor of aflatoxins. Remarkably, we found that VONE and VOROL had ring-opened structures. Their molecular masses were 386 and 388 Da, respectively, which were 18 Da greater than the molecular masses previously reported. These data demonstrated that two kinds of reactions are involved in the pathway from AVR to VHA in aflatoxin biosynthesis: (i) a reaction from (1′S,5′S)-AVR to HVN, catalyzed by the microsomal enzyme, and (ii) a new metabolic grid, catalyzed by a new cytosol monooxygenase enzyme and the previously reported VHA reductase enzyme, composed of HVN, VONE, VOAc, and VHA. A novel hydrogenation-dehydrogenation reaction between VONE and VOROL was also discovered. 相似文献
80.
Barbels of the Mullidae and Polymixiidae were observed osteologically and myologically. They were considered to be derived
from branchiostegal rays. Four muscles, the extensor tentaculi, retractor tentaculi, and two sections of rotator tentaculi,
were related to the barbels in both families. These muscles originate from almost all the hyoid bones in mullids, whereas
they originate only from the ventral hypohyal and fifth branchiostegal ray in polymixiids. In addition, each muscle related
to the barbel of the former is independent from others, but that of the latter is interconnected. These muscular differences
indicate that the barbels occurring in the two families are nonhomologous.
Received: August 27, 2000 / Revised: April 11, 2001/ Accepted: May 13, 2001 相似文献