首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3263篇
  免费   214篇
  3477篇
  2022年   27篇
  2021年   30篇
  2020年   29篇
  2019年   46篇
  2018年   46篇
  2017年   45篇
  2016年   67篇
  2015年   107篇
  2014年   110篇
  2013年   190篇
  2012年   231篇
  2011年   193篇
  2010年   146篇
  2009年   124篇
  2008年   217篇
  2007年   237篇
  2006年   220篇
  2005年   196篇
  2004年   210篇
  2003年   207篇
  2002年   197篇
  2001年   40篇
  2000年   40篇
  1999年   39篇
  1998年   35篇
  1997年   23篇
  1996年   31篇
  1995年   25篇
  1994年   28篇
  1993年   27篇
  1992年   21篇
  1991年   36篇
  1990年   25篇
  1989年   22篇
  1988年   15篇
  1987年   23篇
  1986年   16篇
  1985年   15篇
  1984年   21篇
  1983年   18篇
  1982年   12篇
  1981年   10篇
  1980年   7篇
  1978年   7篇
  1977年   8篇
  1975年   10篇
  1973年   6篇
  1972年   5篇
  1971年   6篇
  1969年   5篇
排序方式: 共有3477条查询结果,搜索用时 15 毫秒
131.
A study of the ontogeny of the lateral line system in leptocephali of the Japanese eel Anguilla japonica reveals the existence of three morphologically different types of lateral line organs. Type I is a novel sensory organ with hair cells bearing a single kinocilium, lacking stereocilia, distributed mainly on the head of larvae, and morphologically different from typical superficial neuromasts of the lateral line system. Its developmental sequence suggests that it may be a presumptive canal neuromast. Type II is an ordinary superficial neuromast, common in other teleost larvae, which includes presumptive canal neuromasts that first appear on the trunk and accessory superficial neuromasts that later appear on the head and trunk. Type III is a very unusual neuromast located just behind the orbit, close to the otic vesicle, with radially oriented hair cells, suggesting that these serve as multiple axes of sensitivity for mechanical stimuli. The behavior of larval eels suggests that the radially oriented neuromasts may act as the sole mechanosensory organ until the ordinary superficial neuromasts develop. The finding that larval eels possess a well-developed mechanosensory system suggests the possibility that they are also capable of perceiving weak environmental mechanical stimuli, like other teleost larvae.  相似文献   
132.
A lectin - designated OXYL for the purposes of this study that strongly recognizes complex-type oligosaccharides of serum glycoproteins - was purified from a crinoid, the feather star Oxycomanthus japonicus, the most basal group among extant echinoderms. OXYL was purified through a combination of anion-exchange and affinity chromatography using Q-sepharose and fetuin-sepharose gel, respectively. Lectin was determined to be a 14-kDa polypeptide by sodium dodecyl sulphate-polyacrylamide gel electrophoresis under reducing conditions. However, 14-kDa and 28-kDa bands appeared in the same proportion under non-reducing conditions. Gel permeation chromatography showed a 54-kDa peak, suggesting that lectin consists of four 14-kDa subunits. Divalent cations were not indicated, and stable haemagglutination activity was demonstrated at pH 4-12 and temperatures below 60°C. Surface plasmon resonance analysis of OXYL against fetuin showed k(ass) and k(diss) values of 1.4×10(-6)M(-1)s(-1) and 3.1×10(-3)s(-1), respectively, indicating that it has a strong binding affinity to the glycoprotein as lectin. Frontal affinity chromatography using 25 types of prydylamine-conjugated glycans indicated that OXYL specifically recognizes multi-antennary complex-type oligosaccharides containing type-2 N-acetyllactosamines (Galβ1-4GlcNAc) if α2-3-linked sialic acid is linked at the non-reducing terminal. However, type-1 N-acetyllactosamine (Galβ1-3GlcNAc) chains and α2-6-linked sialic acids were never recognized by OXYL. This profiling study showed that OXYL essentially recognizes β1-4-linkage at C-1 position and free OH group at C-6 position of Gal in addition to the conservation of N-acetyl groups at C-2 position and free OH groups at C-3 position of GlcNAc in N-acetyllactosamine. This is the first report on glycomics on a lectin purified from an echinoderm belonging to the subphylum Pelmatozoa.  相似文献   
133.
To reduce nitrogenous emissions from composting, two different countermeasures were applied simultaneously in swine manure composting. One was forming struvite by adding Mg and P at the start of composting, and the other was to promote nitratation (nitrite being oxidized nitrate) by adding nitrite-oxidizing bacteria after the thermophilic phase of composting. In the laboratory- and mid-scale composting experiments, 25-43% of NH3, 52-80% of N2O and 96-99% of NO emissions were reduced. From the nitrogen balance, it was revealed that the struvite formation reduced not only NH3, but also other nitrogenous emissions except N2O. The amount of total nitrogen losses was reduced by 60% by the two combined countermeasures, against 51% by the struvite formation alone. However, the nitratation promotion dissolved struvite crystals due to the pH decline, diminishing the effect of struvite as a slow-release fertilizer.  相似文献   
134.
GGGGCC (G4C2) repeat expansion in the C9orf72 gene has been shown to cause frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Dipeptide repeat proteins produced through repeat-associated non-AUG (RAN) translation are recognized as potential drivers for neurodegeneration. Therefore, selective inhibition of RAN translation could be a therapeutic avenue to treat these neurodegenerative diseases. It was previously known that the porphyrin TMPyP4 binds to G4C2 repeat RNA. However, the consequences of this interaction have not been well characterized. Here, we confirmed that TMPyP4 inhibits C9orf72 G4C2 repeat translation in cellular and in in vitro translation systems. An artificial insertion of an AUG codon failed to cancel the translation inhibition, suggesting that TMPyP4 acts downstream of non-AUG translation initiation. Polysome profiling assays also revealed polysome retention on G4C2 repeat RNA, along with inhibition of translation, indicating that elongating ribosomes stall on G4C2 repeat RNA. Urea-resistant interaction between G4C2 repeat RNA and TMPyP4 likely contributes to this ribosome stalling and thus to selective inhibition of RAN translation. Taken together, our data reveal a novel mode of action of TMPyP4 as an inhibitor of G4C2 repeat translation elongation.  相似文献   
135.
Pasteurized milk is a complex food that contains various inhibitors of polymerase chain reaction (PCR) and may contain a large number of dead bacteria, depending on the milking conditions and environment. Ethidium monoazide bromide (EMA)-PCR is occasionally used to distinguish between viable and dead bacteria in foods other than pasteurized milk. EMA is a DNA-intercalating dye that selectively permeates the compromised cell membranes of dead bacteria and cleaves DNA. Usually, EMA-PCR techniques reduce the detection of dead bacteria by up to 3.5 logs compared with techniques that do not use EMA. However, this difference may still be insufficient to suppress the amplification of DNA from dead Gram-negative bacteria (e.g., total coliform bacteria) if they are present in pasteurized milk in large numbers. Thus, false positives may result. We developed a new method that uses real-time PCR targeting of a long DNA template (16S-23S rRNA gene, principally 2,451?bp) following EMA treatment to completely suppress the amplification of DNA of up to 7?logs (10(7)?cells) of dead total coliforms. Furthermore, we found that a low dose of proteinase K (25?U/ml) removed PCR inhibitors and simultaneously increased the signal from viable coliform bacteria. In conclusion, our simple protocol specifically detects viable total coliforms in pasteurized milk at an initial count of ≥1?colony forming unit (CFU)/2.22?ml within 7.5?h of total testing time. This detection limit for viable cells complies with the requirements for the analysis of total coliforms in pasteurized milk set by the Japanese Sanitation Act (which specifies <1?CFU/2.22?ml).  相似文献   
136.
Phosphoglucomutase (PGM, EC 2.7.5.1) is one of the enzymes constituting the carbohydrate synthesis pathway in higher plants. It catalyzes the reversible conversion of glucose 6-phosphate (Glc6P) to glucose 1-phosphate (Glc1P). Previously, metabolic turnover analysis using (13)CO(2) in tobacco leaves demonstrated that conversion of Glc6P to Glc1P may limit carbon flow into carbohydrate synthesis. In order to assess the effects of PGM, Arabidopsis thaliana cytosolic or plastidial PGM was expressed under the control of cauliflower mosaic virus 35S promoter in tobacco plants (Nicotiana tabacum cv. Xanthi) and phenotypic analysis was performed. The transgenic plants expressing Arabidopsis plastidial PGM showed 3.5-8.2-fold higher PGM activity than that of wild-type, and leaf starch and sucrose contents increased 2.3-3.2-fold and 1.3-1.4-fold, respectively over wild-type levels. In vivo(13)C-labeling experiments indicated that photosynthetically fixed carbon in the transgenic plants could be converted faster to Glc1P and adenosine 5'-diphosphate glucose than in wild-type, suggesting that elevation of plastidial PGM activity should accelerate conversion of Glc6P to Glc1P in chloroplasts and increase carbon flow into starch. On the other hand, transgenic plants expressing Arabidopsis cytosolic PGM showed a 2.1-3.4-fold increase in PGM activity over wild-type and a decrease of leaf starch content, but no change in sucrose content. These results suggest that plastidial PGM limits photosynthetic carbon flow into starch.  相似文献   
137.
Floral chemical components are important cues used by plants to attract pollinators. One outstanding case is “fruit fly orchids” in the genus of Bulbophyllum to attract their pollinators by releasing characteristic fragrances. Dacini fruit flies are main or exclusive pollinators which are strongly attracted to certain natural chemicals, either methyl eugenol (ME: a phenylpropanoid) or raspberry ketone (RK: a phenylbutanoid). Furthermore, zingerone (ZN: a phenylbutanoid) has been characterized as the attractant for both ME- and RK-sensitive fruit fly species. In the present study, we examined chemical profiles of two closely related Bulbophyllum orchids—B. hortorum, and B. macranthoides subsp. tollenoniferum—distributed in Papua New Guinea and the Southeast Asian countries, respectively. We first observed that RK-sensitive flies were attracted to these orchids by ex situ cultivation in Penang, Malaysia. These Bulbophyllum orchids contained RK and/or ZN as their main floral components. Other than these attractants, multiple phenylbutanoids including potential attractants for RK-sensitive species were identified from these orchids. Therefore, we examined attractiveness of potential phenylbutanoid attractants to an RK-sensitive melon fly, Zeugodacus cucurbitae, using laboratory-reared flies. Furthermore, we analyzed molecular phylogenetic relationships among phenylpropanoid- or phenylbutanoid-producing orchids to see a relation between chemical profiles and phylogenetic classification in the related species.  相似文献   
138.
In Drosophila, the PIWI proteins, Aubergine (Aub), AGO3, and Piwi are expressed in germlines and function in silencing transposons by associating with PIWI‐interacting RNAs (piRNAs). Recent studies show that PIWI proteins contain symmetric dimethyl‐arginines (sDMAs) and that dPRMT5/Capsuleen/DART5 is the modifying enzyme. Here, we show that Tudor (Tud), one of Tud domain‐containing proteins, associates with Aub and AGO3, specifically through their sDMA modifications and that these three proteins form heteromeric complexes. piRNA precursor‐like molecules are detected in these complexes. The expression levels of Aub and AGO3, along with their degree of sDMA modification, were not changed by tud mutations. However, the population of transposon‐derived piRNAs associated with Aub and AGO3 was altered by tud mutations, whereas the total amounts of small RNAs on Aub and AGO3 was increased. Loss of dprmt5 did not change the stability of Aub, but impaired its association with Tud and lowered piRNA association with Aub. Thus, in germline cells, piRNAs are quality‐controlled by dPRMT5 that modifies PIWI proteins, in tight association with Tud.  相似文献   
139.
140.
We isolated 11 independent temperature-sensitive (ts) mutants of Schizosaccharomyces pombe RanGAP, SpRna1 that have several amino acid changes in the conserved domains of RanGAP. Resulting Sprna1ts showed a strong defect in mitotic chromosome segregation, but did not in nucleocytoplasmic transport and microtubule formation. In addition to Sprna1+ and Spksp1+, the clr4+ (histone H3-K9 methyltransferase), the S. pombe gene, SPAC25A8.01c, designated snf2SR+ (a member of the chromatin remodeling factors, Snf2 family with DNA-dependent ATPase activity), but not the spi1+ (S. pombe Ran homolog), rescued a lethality of Sprna1ts. Both Clr4 and Snf2 were reported to be involved in heterochromatin formation essential for building the centromeres. Consistently, Sprna1ts was defective in gene-silencing at the centromeres. But a silencing at the telomere, another heterochromatic region, was normal in all of Sprna1ts strains, indicating SpRna1 in general did not function for a heterochromatin formation. snf2SR+ rescued a centromeric silencing defect and Deltaclr4+ was synthetic lethal with Sprna1ts. Taken together, SpRna1 was suggested to function for constructing the centromeres, by cooperating with Clr4 and Snf2SR. Loss of SpRna1 activity, therefore, caused chromosome missegregation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号