首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4140篇
  免费   286篇
  4426篇
  2022年   27篇
  2021年   37篇
  2020年   27篇
  2019年   46篇
  2018年   50篇
  2017年   55篇
  2016年   64篇
  2015年   126篇
  2014年   121篇
  2013年   225篇
  2012年   265篇
  2011年   217篇
  2010年   163篇
  2009年   147篇
  2008年   262篇
  2007年   297篇
  2006年   264篇
  2005年   237篇
  2004年   264篇
  2003年   238篇
  2002年   225篇
  2001年   89篇
  2000年   89篇
  1999年   80篇
  1998年   48篇
  1997年   46篇
  1996年   42篇
  1995年   45篇
  1994年   48篇
  1993年   40篇
  1992年   58篇
  1991年   61篇
  1990年   60篇
  1989年   25篇
  1988年   47篇
  1987年   36篇
  1986年   26篇
  1985年   26篇
  1984年   25篇
  1983年   20篇
  1982年   14篇
  1981年   12篇
  1980年   10篇
  1979年   15篇
  1976年   14篇
  1975年   12篇
  1974年   16篇
  1973年   11篇
  1969年   7篇
  1968年   7篇
排序方式: 共有4426条查询结果,搜索用时 15 毫秒
101.
Surgical trauma, which is inevitably associated with the surgical removal of cancer, has been reported to accelerate tumor metastasis. The close association of reactive oxygen species with the trauma and tumor metastasis supports the possibility of using antioxidants for the inhibition of metastasis. To inhibit surgical trauma-enhanced peritoneal dissemination, human catalase (hCAT) derivatives, i.e., hCAT-nona-arginine peptide (hCAT-R9) and hCAT-albumin-binding peptide (hCAT-ABP), were designed to increase the retention time of the antioxidant enzyme in the abdominal cavity after intraperitoneal administration. Both 125I-labeled derivatives showed significantly prolonged retention in the cavity compared to 125I-hCAT. Cauterization of the cecum of mice with a hot iron, an experimental model of surgical trauma, induced abdominal adhesions. In addition, cauterization followed by colon26 tumor cell inoculation increased lipid peroxidation in the cecum and mRNA expression of molecules associated with tissue repair/adhesion and inflammation in the peritoneum. hCAT derivatives significantly suppressed the increased mRNA expression. The cauterization also increased the number of tumor cells in the abdominal organs, and the number was significantly reduced by hCAT-R9 or hCAT-ABP. These results indicate that hCAT-R9 and hCAT-ABP, both of which have a long retention time in the peritoneal cavity, can be effective at inhibiting surgery-induced peritoneal metastasis.  相似文献   
102.
The mechanism of induction of DNA synthesis in quiescent rat 3Y1 cells by the adenovirus E1A gene was investigated using the 3Y1 derivative cell lines g12-21, gn12RB1, and gn12RB2. The g12-21 cells express the E1A 12S cDNA and the latter two cells express both the E1A 12S cDNA and the human retinoblastoma susceptibility (Rb) gene at different levels in response to dexamethasone (dex). The cDNA sequences of E1A-inducible cell cycle-dependent genes, clone 3 and clone 16, were isolated by differential screening of a cDNA library constructed from dex-treated g12-21 cells. The quiescent 3Y1 cells induced c-fos and c-myc expression within 2 h after serum stimulation and expressed clone 16 and clone 3 transiently at around 8 h before the onset of DNA synthesis (10 h). In contrast, the quiescent g12-21 cells treated with dex expressed a high level of E1A at 6 to 8 h after treatment and expressed clone 16 and clone 3 at around 8 h without stimulation of c-fos and c-myc expression, suggesting that E1A bypasses the cell cycle early in G1. The half-maximal rate of DNA synthesis was reached in a much shorter time in dex-treated g12-21 cells (12 h) than in serum-treated 3Y1 cells (18 h), suggesting that E1A also bypasses the cell cycle at the G1/S boundary. The gn12RB1 and gn12RB2 cells were unable to induce DNA synthesis in response to dex presumably due to lower levels of E1A expression, although gn12RB2 but not gn12RB1 cells could express clone 16 and clone 3. These results suggest that the level of E1A required for bypass at the G1/S boundary is higher than that required early in G1.  相似文献   
103.
P-glycoprotein (P-gp) is a 170 kDa membrane protein that belongs to the ATP-binding cassette (ABC) transporter superfamily. In normal tissues, P-gp functions as an ATP-dependent efflux pump that excretes highly hydrophobic xenobiotic compounds, playing an important role in protecting the cells/tissues from xenobiotics. In the present study, chemical substances that could directly modulate the intestinal P-gp activity were searched in vegetables and fruits. By using human intestinal epithelial Caco-2 cells as a model of the small intestinal cells, we observed that a bitter melon fraction extracted from 40% methanol showed the greatest increase of the rhodamine-123 accumulation by Caco-2 cells. Inhibitory compounds in the bitter melon fraction were then isolated by HPLC using Pegasil C4 and Pegasil ODS columns. The HPLC fraction having the highest activity was analyzed by (1)H-NMR and FAB-MS, and the active compound was identified as 1-monopalmitin. It is interesting that certain types of monoglyceride might be involved in the drug bioavailability by specifically inhibiting the efflux mediated by P-gp.  相似文献   
104.
A431 cells grew in protein-free Coon's modified Ham's F12 medium at a similar rate to that in medium supplemented with calf serum and secreted a growth factor capable of stimulating DNA synthesis in BALB/c3T3 cells. This factor had strong affinity for heparin and was partially purified from the conditioned medium by heparin-Sepharose affinity chromatography and molecular sieving on Bio-Gel P-60. The apparent molecular weight of the factor was 20-30K. Its activity was inhibited by heparin at concentrations of above 0.03 microgram/ml.  相似文献   
105.
The effect of phenformin (DBI) on the plasma intestinal glucagon-like immunoreactivity (GLI) and pancreatic glucagon (IRG) responses to oral and intravenous glucose loads were studied in 26 gastrectomized subjects, using a cross-reacting and an IRG-specific anti-serum. The drug produced no significant changes in fasting GLI and IRG levels. Thirty minutes after oral glucose alone, the total GLI level rose to a peak of 1.55 +/- 0.17 ng/ml in the untreated subjects and to a maximum level of 1.67 +/- 0.18 ng/ml in the DBI-pretreated subjects. However, the mean GLI levels obtained 120 and 180 min after oral glucose were significantly higher after treatment with DBI. The blood sugar and IRI responses to oral glucose were lowered significantly by DBI pretreatment. DBI did not alter the glucose, IRI, IRG and GLI response to intravenous glucose. These results suggest that the release of intestinal GLI is not related to the intestinal absorption of glucose.  相似文献   
106.
Twin, white-fronted marmosets (Callithrix geoffroyi) born and raised in a zoo in Japan died at 7 mo of age. Several encapsulated nematode larvae were detected in the intestinal wall, as well as a few in the mesenteric lymph nodes of 1 of the twins. In the other marmoset, no encapsulated nematode larva was detected in the organs, but many adult Pterygodermatites nycticebi were found in the intestinal lumen. In the past 5 yr, 5 primates kept in the same zoo, i.e., 1 squirrel monkey (Saimiri sciureus), 2 Pygmy marmosets (Cebuella pygmaea), 1 Senegal galago (Galago senegalensis), and 1 cotton-top tamarin (Saguinus oedipus), died from heavy infestation with the same nematode. A few migrating larvae of the rictulariid were also identified histologically in the intestinal wall and liver of the cotton-top tamarin. Although no other primate currently held in the same zoo was infected with the rictulariid, German cockroaches (Blattella germanica) collected with traps near marmoset cages had encapsulated P. nycticebi larvae, indicating latent perpetuation of the life cycle of this rictulariid species in the zoo premises. Our results indicated that encapsulation or migration of third-stage larvae of P. nycticebi might occur accidentally in the organs of callithrichid primates.  相似文献   
107.
Cellular events involved in butyric acid-induced T cell apoptosis   总被引:4,自引:0,他引:4  
We have previously demonstrated that butyric acid induces cytotoxicity and apoptosis of murine thymocytes, splenic T cells, and human Jurkat T cells. Therefore, to determine the apoptotic signaling pathway induced by butyric acid, we investigated the contribution of reactive oxygen species (ROS), mitochondria, ceramide, and mitogen-activated protein kinases in butyric acid-induced human Jurkat cell apoptosis. After exposure of cells to butyric acid, a pronounced accumulation of ROS was seen. Pretreatment of cells with the antioxidant N-acetyl-cysteine or 3-aminobenzamide attenuated butyric acid-induced apoptosis through a reduction of ROS generation. Cytochrome c, apoptosis-inducing factor, and second mitochondria-derived activator of caspases protein release from mitochondria into the cytosol were detected shortly after butyric acid treatment. Exposure of cells to butyric acid resulted in an increase in cellular ceramide in a time-dependent fashion. In addition, butyric acid-induced apoptosis was inhibited by DL-threo-dihidrosphingosine, a potent inhibitor of sphingosine kinase. Using anti-extracellular signal-regulated kinase (ERK), anti-c-Jun N-terminal kinase (JNK), and anti-p38 phosphospecific Abs, we showed a decrease in ERK, but not in JNK and p38 phosphorylation after treatment of cells with butyric acid. Pretreatment of cells with the JNK inhibitor SP600125 attenuated the effect of butyric acid on apoptosis, whereas no effect was seen with the p38 inhibitor SB202190 or the ERK inhibitor PD98059. Taken together, our results indicate that butyric acid-induced T cell apoptosis is mediated by ceramide production, ROS synthesis in mitochondria, and JNK activation in the mitogen-activated protein kinase cascade. Finally, these results were further substantiated by the expression profile of butyric acid-treated Jurkat cells obtained by means of cDNA array.  相似文献   
108.
miR-146a plays important roles in cancer as it directly targets NUMB, an inhibitor of Notch signaling. miR-146a is reportedly regulated by a G>C polymorphism (SNP; rs2910164). This polymorphism affects various cancers, including colorectal cancer (CRC). However, the clinical significance of miR-146a polymorphism in CRC remains unclear. A total of 59 patients with CRC were divided into 2 groups: a CC/CG genotype (n = 32) and a GG genotype (n = 27), based on the miR-146a polymorphism. cDNA microarray analysis was performed using 59 clinical samples. Significantly enriched gene sets in each genotype were extracted using GSEA. We also investigated the association between miR-146a polymorphism and miR-146a, NUMB expression or migratory response in CRC cell lines. The CC/CG genotype was associated with significantly more synchronous liver metastasis (p = 0.007). A heat map of the two genotypes showed that the expression profiles were clearly stratified. GSEA indicated that Notch signaling and JAK/STAT3 signaling were significantly associated with the CC/CG genotype (p = 0.004 and p = 0.023, respectively). CRC cell lines with the pre-miR-146a/C revealed significantly higher miR-146a expression (p = 0.034) and higher NUMB expression and chemotactic activity. In CRC, miR-146a polymorphism is involved in liver metastasis. Identification of this polymorphism could be useful to identify patients with a high risk of liver metastasis in CRC.  相似文献   
109.
Lurasidone is a novel antipsychotic agent with high affinity for dopamine D2, 5-hydroxyltryptamine 5-HT2A, and 5-HT7 receptors. Lurasidone has negligible affinity for histamine H1 and muscarinic M1 receptors, which are thought to contribute to side effects such as weight gain, sedation, and worsening of cognitive deficits. Our interests focus on why lurasidone has such high selectivity for only a part of these aminergic G-protein coupled receptors (GPCRs) and the different binding profile from ziprasidone, which has the same benzisothiazolylpiperazine moiety as lurasidone. In order to address these issues, we constructed structural models of lurasidone–GPCR complexes by homology modeling of receptors, exhaustive docking of ligand, and molecular dynamics simulation-based refinement of complexes. This computational study gave reliable structural models for D2, 5-HT2A, and 5-HT7, which had overall structural complementarities with a salt bridge anchor at the center of the lurasidone molecule, but not for H1 and M1 owing to steric hindrance between the norbornane-2,3-dicarboximide and/or cyclohexane part of lurasidone and both receptors. By comparison with the structural models of olanzapine–GPCRs and ziprasidone–GPCRs constructed using the same computational protocols, it was suggested that the bulkiness of the norbornane-2,3-dicarboximide part and the rigidity and the bulkiness of the cyclohexyl linker gave lurasidone high selectivity for the desired aminergic GPCRs. Finally, this structural insight was validated by a binding experiment of the novel benzisothiazolylpiperazine derivatives. This knowledge on the structural mechanism behind the receptor selectivity should help to design new antipsychotic agents with preferable binding profiles, and the established computational protocols realize virtual screening and structure-based drug design for other central nervous system drugs with desired selectivity for multiple targets.  相似文献   
110.
Oxygen plays an important role in diverse biological processes. However, since quantitation of the partial pressure of cellular oxygen in vivo is challenging, the extent of oxygen perturbation in situ and its cellular response remains underexplored. Using two‐photon phosphorescence lifetime imaging microscopy, we determine the physiological range of oxygen tension in osteoclasts of live mice. We find that oxygen tension ranges from 17.4 to 36.4 mmHg, under hypoxic and normoxic conditions, respectively. Physiological normoxia thus corresponds to 5% and hypoxia to 2% oxygen in osteoclasts. Hypoxia in this range severely limits osteoclastogenesis, independent of energy metabolism and hypoxia‐inducible factor activity. We observe that hypoxia decreases ten‐eleven translocation (TET) activity. Tet2/3 cooperatively induces Prdm1 expression via oxygen‐dependent DNA demethylation, which in turn activates NFATc1 required for osteoclastogenesis. Taken together, our results reveal that TET enzymes, acting as functional oxygen sensors, regulate osteoclastogenesis within the physiological range of oxygen tension, thus opening new avenues for research on in vivo response to oxygen perturbation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号