首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   677篇
  免费   36篇
  713篇
  2023年   3篇
  2022年   16篇
  2021年   27篇
  2020年   8篇
  2019年   12篇
  2018年   23篇
  2017年   11篇
  2016年   13篇
  2015年   29篇
  2014年   39篇
  2013年   39篇
  2012年   36篇
  2011年   31篇
  2010年   25篇
  2009年   18篇
  2008年   51篇
  2007年   48篇
  2006年   44篇
  2005年   40篇
  2004年   47篇
  2003年   30篇
  2002年   37篇
  2001年   13篇
  2000年   7篇
  1999年   15篇
  1998年   4篇
  1997年   2篇
  1996年   3篇
  1995年   4篇
  1994年   3篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1990年   4篇
  1989年   4篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1984年   1篇
  1983年   3篇
  1981年   1篇
  1979年   4篇
  1978年   1篇
  1976年   1篇
  1975年   2篇
排序方式: 共有713条查询结果,搜索用时 9 毫秒
661.
Ciliogenesis is regulated by context-dependent cellular cues, including some transduced through appendage-like structures on ciliary basal bodies called transition fibers and basal feet. However, the molecular basis for this regulation is not fully understood. The Odf2 gene product, ODF2/cenexin, is essential for both ciliogenesis and the formation of the distal and subdistal appendages on centrioles, which become basal bodies. We examined the effects of Odf2 deletion constructs on ciliogenesis in Odf2-knockout F9 cells. Electron microscopy revealed that ciliogenesis and transition fiber formation required the ODF2/cenexin fragment containing amino acids (aa) 188–806, whereas basal foot formation required aa 1–59 and 188–806. These sequences also formed distal and subdistal appendages, respectively, indicating that the centriole appendages are molecularly analogous to those on basal bodies. We used the differential formation of appendages by Odf2 deletion constructs to study the incorporation and function of molecules associated with each appendage type. We found that transition fibers and distal appendages were required for ciliogenesis and subdistal appendages stabilized the centrosomal microtubules.  相似文献   
662.
663.
664.
665.
Small GTPases of the ADP-ribosylation factor (ARF) family, except for ARF6, mainly localize to the Golgi apparatus, where they trigger formation of coated carrier vesicles. We recently showed that class I ARFs (ARF1 and ARF3) localize to recycling endosomes, as well as to the Golgi, and are redundantly required for recycling of endocytosed transferrin. On the other hand, the roles of class II ARFs (ARF4 and ARF5) are not yet fully understood, and the complementary or overlapping functions of class I and class II ARFs have been poorly characterized. In this study, we find that simultaneous depletion of ARF1 and ARF4 induces extensive tubulation of recycling endosomes. Moreover, the depletion of ARF1 and ARF4 inhibits retrograde transport of TGN38 and mannose-6-phosphate receptor from early/recycling endosomes to the trans-Golgi network (TGN) but does not affect the endocytic/recycling pathway of transferrin receptor or inhibit retrograde transport of CD4-furin from late endosomes to the TGN. These observations indicate that the ARF1+ARF4 and ARF1+ARF3 pairs are both required for integrity of recycling endosomes but are involved in distinct transport pathways: the former pair regulates retrograde transport from endosomes to the TGN, whereas the latter is required for the transferrin recycling pathway from endosomes to the plasma membrane.  相似文献   
666.

Background

For regenerative therapy using induced pluripotent stem cell (iPSC) technology, cell type of origin to be reprogrammed should be chosen based on accessibility and reprogramming efficiency. Some studies report that iPSCs exhibited a preference for differentiation into their original cell lineages, while others did not. Therefore, the type of cell which is most appropriate as a source for iPSCs needs to be clarified.

Methodology/Principal Findings

Genetically matched human iPSCs from different origins were generated using bone marrow stromal cells (BMSCs) and dermal fibroblasts (DFs) of the same donor, and global gene expression profile, DNA methylation status, and differentiation properties into the chondrogenic and osteogenic lineage of each clone were analyzed. Although genome-wide profiling of DNA methylation suggested tissue memory in iPSCs, genes expressed differentially in BMSCs and DFs were equally silenced in our bona fide iPSCs. After cell-autonomous and induced differentiation, each iPSC clone exhibited various differentiation properties, which did not correlate with cell-of-origin.

Conclusions/Significance

The reprogramming process may remove the difference between DFs and BMSCs at least for chondrogenic and osteogenic differentiation. Qualified and genetically matched human iPSC clone sets established in this study are valuable resources for further basic study of clonal differences.  相似文献   
667.
To achieve effective active targeting in a drug delivery system, we previously developed dual-targeting (DT) liposomes decorated with both vascular endothelial growth factor receptor-1 (VEGFR-1)-targeted APRPG and CD13-targeted GNGRG peptide ligands for tumor neovessels, and observed the enhanced suppression of tumor growth in Colon26 NL-17 tumor-bearing mice by the treatment with the DT liposomes encapsulating doxorubicin. In this present study, we examined the binding characteristics of DT liposomes having a different couple of ligands, namely, APRPG and integrin αvβ3-targeted GRGDS peptides. These DT liposomes synergistically associated to stimulated human umbilical vein endothelial cells compared with single-targeting (ST) liposomes decorated with APRPG or GRGDS. The results of a surface plasmon resonance assay showed that ST liposomes modified with APRPG or GRGDS peptide selectively bound to immobilized VEGFR-1 or integrin αvβ3, respectively. DT liposomes showed a higher affinity for a mixture of VEGFR-1 and integrin αvβ3 compared with ST liposomes, suggesting the cooperative binding of these 2 kinds of ligand on the liposomal surface. In a biodistribution assay, the DT liposomes accumulated to a significantly greater extent in the tumors of Colon26 NL-17 tumor-bearing mice compared with other liposomes. Moreover, the intratumoral distribution of the liposomes examined by confocal microscopy suggested that the DT liposomes targeted not only angiogenic endothelial cells but also tumor cells due to GRGDS-decoration. These findings suggest that "dual-targeting" augmented the affinity of the liposomes for the target cells and would thus be useful for active-targeting drug delivery for cancer treatment.  相似文献   
668.
Gelation of methylcellulose (MC) and chemically cross-linked MC via urethane linkage (MCPU) with various molecular weights was investigated in a concentration range from 0.1 to 4.0 wt %. On heating of aqueous solution of MC, three transitions, clear sol to turbid sol, sol to gel and phase separation due to water separation were observed. With increasing molecular weight the transition temperatures decrease. In contrast, no effect of molecular weight on the transition temperatures was observed for MCPU. Structural change of water restrained by MC and MCPU was investigated by DSC. Melting and crystallization of water in both series of sample showed no significant difference, however, a molecular weight dependency of the glass transition was observed for MC. The results obtained in this study indicate that hydrophobic aggregation is restricted by cross-linking. Images of atomic force microscopy (AFM) indicated that from 6 to 16 molecules piled in two layers form a bundle. By chemical cross-linking, molecular chains align in the mono layer, molecular bundles consisting of more than 10 molecules coaggregate and form a large flexible ring.  相似文献   
669.
Cholesterol is essential for cell physiology. Transport of the “accessible” pool of cholesterol from the plasma membrane (PM) to the endoplasmic reticulum (ER) by ER‐localized GRAMD1 proteins (GRAMD1a/1b/1c) contributes to cholesterol homeostasis. However, how cells detect accessible cholesterol within the PM remains unclear. We show that the GRAM domain of GRAMD1b, a coincidence detector for anionic lipids, including phosphatidylserine (PS), and cholesterol, possesses distinct but synergistic sites for sensing accessible cholesterol and anionic lipids. We find that a mutation within the GRAM domain of GRAMD1b that is associated with intellectual disability in humans specifically impairs cholesterol sensing. In addition, we identified another point mutation within this domain that enhances cholesterol sensitivity without altering its PS sensitivity. Cell‐free reconstitution and cell‐based assays revealed that the ability of the GRAM domain to sense accessible cholesterol regulates membrane tethering and determines the rate of cholesterol transport by GRAMD1b. Thus, cells detect the codistribution of accessible cholesterol and anionic lipids in the PM and fine‐tune the non‐vesicular transport of PM cholesterol to the ER via GRAMD1s.  相似文献   
670.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号