首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2445篇
  免费   206篇
  2022年   17篇
  2021年   37篇
  2020年   19篇
  2019年   28篇
  2018年   56篇
  2017年   33篇
  2016年   36篇
  2015年   61篇
  2014年   84篇
  2013年   149篇
  2012年   111篇
  2011年   110篇
  2010年   66篇
  2009年   65篇
  2008年   117篇
  2007年   143篇
  2006年   137篇
  2005年   132篇
  2004年   145篇
  2003年   115篇
  2002年   97篇
  2001年   74篇
  2000年   78篇
  1999年   84篇
  1998年   34篇
  1997年   26篇
  1996年   29篇
  1995年   29篇
  1994年   20篇
  1993年   23篇
  1992年   39篇
  1991年   36篇
  1990年   45篇
  1989年   36篇
  1988年   31篇
  1987年   32篇
  1986年   27篇
  1985年   27篇
  1984年   19篇
  1983年   24篇
  1982年   14篇
  1981年   14篇
  1980年   17篇
  1979年   22篇
  1978年   11篇
  1977年   13篇
  1976年   9篇
  1973年   14篇
  1972年   11篇
  1968年   9篇
排序方式: 共有2651条查询结果,搜索用时 140 毫秒
111.
The formation of D-pantothenic acid-α-glucoside (PaA-α-G) was found from D-pantothenic acid (PaA) and maltose in incubation mixtures of microorganisms, especially Saccharomyces yeasts and Sporobolomyces coralliformis IFO 1032. The reaction conditions were investigated for formation of PaA-α-G by resting cells of Spor. coralliformis. The formation of the compound increased with PaA concentration (3~20 mg/ml). The yield was maximum at 5~10 mg/ml of PaA. Cetyl trimethyl ammonium bromide (0.1 %) promoted the formation of PaA-α-G. Sucrose was the optimal α-glucosyl donor. When 30 mg/ml of sucrose was fed to the reaction mixture (initial sucrose, 100 mg/ml; and PaA, 10 mg/ml) at 12-hr intervals, 5.74 mg/ml (3.30 mg/ml as PaA) of PaA-α-G was formed in 48-hr incubation at 28°C with shaking. PaA-α-G was also formed by yeast α-glucosidase, mold maltase and the cell-free extract of Spor. coralliformis. The compound showed approximately 9~10% and 0.1~0.3% (molar ratio) of activity of PaA for Saccharomyces carlsbergensis ATCC 9080 and Lactobacillus plantarum ATCC 8014, respectively. The compound had the same microbiological activity as authentic 4′-O-(α-D-glucopyranosyl)-D-pantothenic acid.  相似文献   
112.
Enzyme activities involved in the galactose metabolism of Torulopsis Candida grown on a. lactose medium were investigated with the cell-free extract and ammonium sulfate fraction. Remarkable activities of galactokinase, galactose-1-phosphate uridylyltransferase and UDPG pyrophosphorylase were detected, whereas UDPGal pyrophosphorylase activity was weak. UDPGal formation proceeded by the cell-free extract along a coupling reaction catalyzed by UDPG pyrophosphorylase and galactose-1-phosphate uridylyltransferase where UDPG or glucose-l-phosphate acted as a catalyst.

The mechanism of UDPGal accumulation under the fermentative condition could be explained by a concerted inhibition of UDPGal-4- epimerase activity by 5′-UMP and galactose present as fermentation substrates.  相似文献   
113.
Some properties of pyridoxine glucoside-synthesizing enzyme were studied using the partially and highly purified enzyme preparations from Micrococcus sp. No. 431.

The enzyme was stable at pH 7.0 and between 0°C and 30°C. The maximal activity was obtained at pH 8.0 and 37°C. Besides sucrose, phenyl-α-d-glucoside and maltose served as glucosyl donor. Of vitamin B6 compounds tested, only pyridoxine served as glucosyl acceptor. The enzyme activity was inhibited by PCMB and heavy metal ions, and the inhibition was prevented by 2-mercaptoethanol, indicating the enzyme would be a sulfhydryl enzyme. The activity was not affected by chelating agents and not activated by metal ions.  相似文献   
114.
Sixteen triterpenoid glycosides, named S13 to S25, S37, S38 and S40, were isolated from the root of Bupleurum polyclonum Y. Li et S. L. Pan, and their structures were determined from NMR spectral analyses. Among them, S24, S37 and S38 were found to be new substances, their structures being established as 30-β-d-glucopyranosyl 30-hydroxysaikosaponin-b2, 2″-O-acetylsaikosaponin-b2 and 3″-O>-acetylsaikosaponin-b2, respectively.  相似文献   
115.
l-Glutamic acid was formed from d-, l-, and dl-PCA with cell-free extract of Pseudomonas alcaligenes ATCC-12815 grown in the medium containing dl-PCA as a sole source of carbon and nitrogen. The enzyme(s) involved in this conversion reaction was distributed in the soluble fraction within the cell and in 0.5 saturated fraction at the fractionation procedure with the saturation of ammonium sulfate. Optimum pH of this enzyme(s) lied at pH 8.5 and optimum temperature was 30°C. Cu (5 × 10?3 m) inhibited the reaction considerably while Ca or Fe accelerated it. PALP (1×10?3 m) also gave an enhanced activity to some extent. The enzyme preparation converted dextro-rotatory enan-thiomorph of PCA to its laevo-rotatory one which in turn was not converted to the opposite rotation direction by this enzyme. Furthermore, the preparation did not, if any, show d-glutamic acid racemase activity. Isotopic experiments with using dl-PCA-1-14C revealed that l-glutamic acid-1-14C was formed by the cleavage of –CO–NH– bond of pyrrolidone ring of PCA. It was concluded that dl-PCA when assimilated by the present bacterium is at first transformed to l-PCA by the optically isomerizing enzyme and subsequently is cleaved to l-glutamic acid probably by the PCA hydrolysing enzyme.  相似文献   
116.
An E. coli strain, SH209, harboring pLC9–12 exhibited 5- to 6-fold higher γ-glutamyltranspeptidase activity than the wild-type strain, at each growth temperature tested. Maximum activity was observed at 20 ~ 25°C, as was observed with the wild type. A homogeneous enzyme preparation was obtained from the periplasmic fraction of the strain by a simple three-step method. The conditions for γ-glutamyl-DOPA synthesis from l-glutamine and l-DOPA were investigated using the enzyme preparation. Under the best conditions, the maximal yield of 79%, equivalent to 158 mm (51.5 g/l) of γ-glutamyl-DOPA as to both substrates, was obtained. γ-Glutamyl-DOPA was isolated from the reaction mixture and identified using an amino acid analyzer after hydrolysis with HCl or γ-glutamyltranspeptidase.  相似文献   
117.
The cytochrome P450 (CYP) 1–3 families are involved in xenobiotic metabolism, and are expressed primarily in the liver. Ostriches (Struthio camelus) are members of Palaeognathae with the earliest divergence from other bird lineages. An understanding of genes coding for ostrich xenobiotic metabolizing enzyme contributes to knowledge regarding the xenobiotic metabolisms of other Palaeognathae birds. We investigated CYP1–3 genes expressed in female ostrich liver using a next-generation sequencer. We detected 10 CYP genes: CYP1A5, CYP2C23, CYP2C45, CYP2D49, CYP2G19, CYP2W2, CYP2AC1, CYP2AC2, CYP2AF1, and CYP3A37. We compared the gene expression levels of CYP1A5, CYP2C23, CYP2C45, CYP2D49, CYP2G19, CYP2AF1, and CYP3A37 in ostrich liver and determined that CYP2G19 exhibited the highest expression level. The mRNA expression level of CYP2G19 was approximately 2–10 times higher than those of other CYP genes. The other CYP genes displayed similar expression levels. Our results suggest that CYP2G19, which has not been a focus of previous bird studies, has an important role in ostrich xenobiotic metabolism.  相似文献   
118.
Epitopes for a panel of anti-αVβ3 monoclonal antibodies (mAbs) were investigated to explore the activation mechanism of αVβ3 integrin. Experiments utilizing αV/αIIb domain-swapping chimeras revealed that among the nine mAbs tested, five recognized the ligand-binding β-propeller domain and four recognized the thigh domain, which is the upper leg of the αV chain. Interestingly, the four mAbs included function-blocking as well as non-functional mAbs, although they bound at a distance from the ligand-binding site. The epitopes for these four mAbs were further determined using human-to-mouse αV chimeras. Among the four, P3G8 recognized an amino acid residue, Ser-528, located on the side of the thigh domain, while AMF-7, M9, and P2W7 all recognized a common epitope, Ser-462, that was located close to the α-genu, where integrin makes a sharp bend in the crystal structure. Fibrinogen binding studies for cells expressing wild-type αVβ3 confirmed that AMF-7, M9, and P2W7 were inhibitory, while P3G8 was non-functional. However, these mAbs were all unable to block binding when αVβ3 was constrained in its extended conformation. These results suggest that AMF-7, M9, and P2W7 block ligand binding allosterically by stabilizing the angle of the bend in the bent conformation. Thus, a switchblade-like movement of the integrin leg is indispensable for the affinity regulation of αVβ3 integrin.  相似文献   
119.
Midkine (MDK) is a heparin-binding growth factor that is highly expressed in many malignant tumors, including lung cancers. MDK activates the PI3K pathway and induces anti-apoptotic activity, in turn enhancing the survival of tumors. Therefore, the inhibition of MDK is considered a potential strategy for cancer therapy. In the present study, we demonstrate a novel small molecule compound (iMDK) that targets MDK. iMDK inhibited the cell growth of MDK-positive H441 lung adenocarcinoma cells that harbor an oncogenic KRAS mutation and H520 squamous cell lung cancer cells, both of which are types of untreatable lung cancer. However, iMDK did not reduce the cell viability of MDK-negative A549 lung adenocarcinoma cells or normal human lung fibroblast (NHLF) cells indicating its specificity. iMDK suppressed the endogenous expression of MDK but not that of other growth factors such as PTN or VEGF. iMDK suppressed the growth of H441 cells by inhibiting the PI3K pathway and inducing apoptosis. Systemic administration of iMDK significantly inhibited tumor growth in a xenograft mouse model in vivo. Inhibition of MDK with iMDK provides a potential therapeutic approach for the treatment of lung cancers that are driven by MDK.  相似文献   
120.
To understand the fundamental physical properties of calcium maltobionate (MBCa), its water sorption isotherm, glass transition temperature (T g), and viscosity (η) were investigated and compared with those of maltobionic acid (MBH) and maltose. Although amorphous maltose crystalized at water activity (a w) higher than 0.43, MBCa and MBH maintained an amorphous state over the whole a w range. In addition, MBCa had a higher T g and greater resistance to water plasticizing than MBH and maltose. These properties of MBCa likely originate from the strong interaction between MBCa and water induced by electrostatic interactions. Moreover, the effects of temperature and water content on η of an aqueous MBCa solution were evaluated, and its behavior was described using a semi-empirical approach based on a combination of T g extrapolated by the Gordon-Taylor equation and a non-Arrhenius formula known as the Vogel–Fulcher–Tammann equation. This result will be useful for understating the effect of MBCa addition on the solution’s properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号