首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   654篇
  免费   49篇
  2022年   6篇
  2021年   10篇
  2020年   9篇
  2019年   11篇
  2018年   8篇
  2017年   12篇
  2016年   15篇
  2015年   34篇
  2014年   27篇
  2013年   36篇
  2012年   49篇
  2011年   40篇
  2010年   17篇
  2009年   14篇
  2008年   38篇
  2007年   44篇
  2006年   44篇
  2005年   42篇
  2004年   41篇
  2003年   27篇
  2002年   14篇
  2001年   7篇
  2000年   10篇
  1999年   14篇
  1998年   12篇
  1997年   5篇
  1996年   8篇
  1995年   7篇
  1994年   6篇
  1993年   7篇
  1992年   3篇
  1991年   10篇
  1990年   6篇
  1988年   3篇
  1986年   3篇
  1985年   3篇
  1984年   6篇
  1983年   7篇
  1982年   3篇
  1980年   5篇
  1979年   6篇
  1977年   3篇
  1976年   4篇
  1973年   3篇
  1971年   2篇
  1970年   3篇
  1969年   3篇
  1968年   3篇
  1967年   2篇
  1966年   2篇
排序方式: 共有703条查询结果,搜索用时 562 毫秒
321.
Hama K  Aoki J  Bandoh K  Inoue A  Endo T  Amano T  Suzuki H  Arai H 《Life sciences》2006,79(18):1736-1740
Reciprocal interactions between blastocysts and receptive uteri are essential for successful implantation. This process is regulated by the timely interplay of two ovarian hormones, progesterone and estrogen. However, the molecular targets of these hormones are largely unknown. We showed recently that a small bioactive lysophospholipid, lysophosphatidic acid, plays a pivotal role in the establishment of implantation via its cellular receptor, LPA(3). Here we demonstrate that LPA(3) expression is positively and negatively regulated by steroid hormones in mouse uteri. The LPA(3) mRNA level in the uteri increased during early pseudopregnancy, peaking around 3.5 days post coitus (3.5 d.p.c.), then, decreased to the basal level on 4.5 d.p.c. LPA(3) expression remained at a low level in ovariectomized mice, and administration of progesterone to ovariectomized mice up-regulated LPA(3) mRNA expression. In addition, simultaneous administration of estrogen counteracted the effect of progesterone. These results show that progesterone and estrogen cooperatively regulate LPA(3) expression, thereby contributing to the receptivity of uteri during early pregnancy.  相似文献   
322.
323.
In this study, a useful method was developed to fabricate array patterns of microparticles not on electrode surfaces, but on arbitrary surfaces, using negative‐dielectrophoresis (n‐DEP). First, electrodes were designed and electric field simulations were performed to manipulate microparticles toward target areas. Based on the simulation results, multilayered array and grid (MLAG) electrodes, consisting of array electrodes surrounded by insulated regions and a grid electrode, were fabricated for the formation of localized, non‐uniform electric fields. The MLAG electrode was mounted to a target substrate in a face‐to‐face configuration with a spacer. When an AC voltage (4.60 Vrms and 1 MHz) was applied to the MLAG electrode, array patterns of 6 and 20 µm diameter microparticles were rapidly fabricated on the target substrate with ease. The results suggest that MLAG electrodes can be widely applied for the fabrication of biochips including cell arrays. Biotechnol. Bioeng. 2009; 104: 709–718 © 2009 Wiley Periodicals, Inc.  相似文献   
324.
325.
A new electrochemical assay for the detection of secreted alkaline phosphatase (SEAP) from transfectant HeLa cells is proposed using a microarray device and scanning electrochemical microscopy (SECM). The assay consists of two steps: the first is the incubation of a transfected cell in a microarray culture device covered with a substrate modified with anti-SEAP under physiological conditions without any additives. The array device consists of a 4 × 4 array of microwells having a size of 100 μm × 100 μm (diameter × depth). The second step is SECM measurement of secreted SEAP at the antibody-immobilized substrate. This assay ensures accuracy and intactness because the undesired influence of endogeneous ALP is eliminated and the transfected cells are incubated in a culture device under suitable conditions. We successfully detected the expression of SEAP from intact cells at the single-cell level using this assay. The system is useful as a cell-based gene-expression assay.  相似文献   
326.
MIZ1 is encoded by a gene essential for root hydrotropism in Arabidopsis. To characterize the property of MIZ1, we used transgenic plants expressing GFP-tagged MIZ1 (MIZ1-GFP) and mutant MIZ1 (MIZ1(G235E)-GFP) in a miz1-1 mutant. Although both chimeric genes were transcribed, the translational products of MIZ1(G235E)-GFP did not accumulate in roots. Moreover, MIZ1-GFP complemented the mutant phenotype but not MIZ1(G235E)-GFP. The signal corresponding to MIZ1-GFP was detected at high levels in cortical cells and lateral root cap cells and accumulated in compartments in cortical cells. MIZ1-GFP was fractionated into a soluble protein fraction and an endoplasmic reticulum (ER) membrane fraction, where it was bound to the surface of the ER membrane at the cytosolic side.  相似文献   
327.
LPS signaling is mediated through MyD88-dependent and -independent pathways, activating NF-κB, MAP kinases and IRF3. Cot/Tpl2 is an essential upstream kinase in LPS-mediated activation of ERKs. Here we explore the roles of MyD88 and Cot/Tpl2 in LPS-induced chemokine expression by studying myd88?/? and cot/tpl2?/? macrophages. Among the nine LPS-responsive chemokines examined, mRNA induction of ccl5, cxcl10, and cxcl13 is mediated through the MyD88-independent pathway. Notably, Cot/Tpl2-ERK signaling axis exerts negative effects on the expression of these three chemokines. In contrast, LPS-induced gene expression of ccl2, ccl7, cxcl2, cxcl3, ccl8, and cxcl9 is mediated in the MyD88-dependent manner. The Cot/Tpl2-ERK axis promotes the expression of the first four and inhibits the expression of the latter two. Thus, LPS induces expression of multiple chemokines through various signaling pathways in macrophages.  相似文献   
328.
Corticostriatal synapse plasticity of medium spiny neurons is regulated by glutamate input from the cortex and dopamine input from the substantia nigra. While cortical stimulation alone results in long-term depression (LTD), the combination with dopamine switches LTD to long-term potentiation (LTP), which is known as dopamine-dependent plasticity. LTP is also induced by cortical stimulation in magnesium-free solution, which leads to massive calcium influx through NMDA-type receptors and is regarded as calcium-dependent plasticity. Signaling cascades in the corticostriatal spines are currently under investigation. However, because of the existence of multiple excitatory and inhibitory pathways with loops, the mechanisms regulating the two types of plasticity remain poorly understood. A signaling pathway model of spines that express D1-type dopamine receptors was constructed to analyze the dynamic mechanisms of dopamine- and calcium-dependent plasticity. The model incorporated all major signaling molecules, including dopamine- and cyclic AMP-regulated phosphoprotein with a molecular weight of 32 kDa (DARPP32), as well as AMPA receptor trafficking in the post-synaptic membrane. Simulations with dopamine and calcium inputs reproduced dopamine- and calcium-dependent plasticity. Further in silico experiments revealed that the positive feedback loop consisted of protein kinase A (PKA), protein phosphatase 2A (PP2A), and the phosphorylation site at threonine 75 of DARPP-32 (Thr75) served as the major switch for inducing LTD and LTP. Calcium input modulated this loop through the PP2B (phosphatase 2B)-CK1 (casein kinase 1)-Cdk5 (cyclin-dependent kinase 5)-Thr75 pathway and PP2A, whereas calcium and dopamine input activated the loop via PKA activation by cyclic AMP (cAMP). The positive feedback loop displayed robust bi-stable responses following changes in the reaction parameters. Increased basal dopamine levels disrupted this dopamine-dependent plasticity. The present model elucidated the mechanisms involved in bidirectional regulation of corticostriatal synapses and will allow for further exploration into causes and therapies for dysfunctions such as drug addiction.  相似文献   
329.
330.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号