首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1265篇
  免费   88篇
  2022年   6篇
  2021年   15篇
  2020年   12篇
  2019年   14篇
  2018年   17篇
  2017年   18篇
  2016年   25篇
  2015年   52篇
  2014年   39篇
  2013年   72篇
  2012年   70篇
  2011年   78篇
  2010年   42篇
  2009年   35篇
  2008年   80篇
  2007年   62篇
  2006年   58篇
  2005年   63篇
  2004年   61篇
  2003年   47篇
  2002年   31篇
  2001年   26篇
  2000年   37篇
  1999年   32篇
  1998年   16篇
  1997年   16篇
  1996年   15篇
  1995年   18篇
  1994年   8篇
  1993年   15篇
  1992年   19篇
  1991年   22篇
  1990年   23篇
  1989年   17篇
  1988年   25篇
  1987年   22篇
  1986年   17篇
  1985年   17篇
  1984年   11篇
  1983年   7篇
  1982年   11篇
  1981年   18篇
  1980年   6篇
  1979年   13篇
  1978年   12篇
  1977年   8篇
  1976年   3篇
  1973年   5篇
  1972年   4篇
  1971年   3篇
排序方式: 共有1353条查询结果,搜索用时 15 毫秒
91.
Detergent resistant membranes (DRMs) have been implicated in numerous cellular processes including signal transduction, membrane trafficking, and molecular sorting. Flotillins-1 and -2 have recently been shown to be large components of erythrocyte DRMs. In this study, we show that a Plasmodium falciparum infection disrupts the association of flotillins with erythrocyte DRMs. Flotillins are probably released from erythrocyte DRMs through the reduction of cholesterol and sphingomyelin levels during the course of a P. falciparum-infection. Although it is well known that a P. falciparum infection can modify the host erythrocyte membrane, this is the first report that P. falciparum can alter the DRM components of erythrocyte membranes.  相似文献   
92.
Chitinase C (ChiC) is the first bacterial family 19 chitinase discovered in Streptomyces griseus HUT6037. While it shares significant similarity with the plant family 19 chitinases in the catalytic domain, its N-terminal chitin-binding domain (ChBD(ChiC)) differs from those of the plant enzymes. ChBD(ChiC) and the catalytic domain (CatD(ChiC)), as well as intact ChiC, were separately produced in E. coli and purified to homogeneity. Binding experiments and isothermal titration calorimetry assays demonstrated that ChBD(ChiC) binds to insoluble chitin, soluble chitin, cellulose, and N-acetylchitohexaose (roughly in that order). A deletion of ChBD(ChiC) resulted in moderate (about 50%) reduction of the hydrolyzing activity toward insoluble chitin substrates, but most (about 90%) of the antifungal activity against Trichoderma reesei was abolished by this deletion. Thus, this domain appears to contribute more importantly to antifungal properties than to catalytic activities. ChBD(ChiC) itself did not have antifungal activity or a synergistic effect on the antifungal activity of CatD(ChiC) in trans.  相似文献   
93.
We have recently shown that the long-term ingestion of dietary diacylglycerol (DAG) mainly containing 1,3-isoform reduces body fat accumulation in humans as compared to triacylglycerol (TAG) with the same fatty acid composition. The fat reduction in this human experiment was most pronounced in visceral fat and hepatic fat. Recent animal studies have also indicated that dietary DAG induces alteration of lipid metabolism in the rat liver. In the present study, the dietary effects of DAG on high fat diet-induced hepatic fat accumulation and hepatic microsomal triglyceride transfer protein (MTP) activity were examined in comparison with those of TAG diet in rats. When the TAG oil content was increased from 10 to 30 g/100 g diet, hepatic TAG concentration, hepatic MTP activity and MTP large subunit mRNA levels were significantly increased after 21 days. However, when the dietary TAG oil (30 g/100 g diet) was replaced with the same concentration of DAG oil with the same fatty acid composition, the increase of the TAG concentration and the MTP activity in the liver were significantly less and the mRNA levels remained unchanged. The MTP activity levels correlated significantly with hepatic TAG concentration.These results showed that dietary DAG may suppress high fat diet-induced MTP activity in the liver, and indicated the possibility that hepatic TAG concentration may regulate hepatic MTP activity.  相似文献   
94.
95.
Aggregation of the amyloid beta peptides (A beta 1-42 and A beta 1-40) plays a pivotal role in pathogenesis of Alzheimer's disease. Although it is widely accepted that the aggregates of A betas mainly consist of beta-sheet structure, the precise aggregation mechanism remains unclear. To identify amino acid residues that are important for the beta-sheet formation, a series of proline-substituted mutants of A beta 1-42 peptides at positions 19-26 was synthesized in a highly pure form and their aggregation ability and neurotoxicity on PC12 cells were investigated. All proline-substituted A beta 1-42 mutants except for 22P- and 23P-A beta 1-42 were hard to aggregate and showed weaker cytotoxicity than wild-type A beta 1-42, suggesting that the residues at positions 19-21 and 24-26 are important for the beta-sheet formation. In contrast, 22P-A beta 1-42 extensively aggregated with stronger cytotoxicity than wild-type A beta 1-42. Since proline has a propensity for beta-turn structure as a Pro-X corner, these data implicate that beta-turn formation at positions 22 and 23 plays a crucial role in the aggregation and neurotoxicity of A beta peptides.  相似文献   
96.
Exobasidium symploci-japonicae var. carpogenum, causing Exobasidium fruit deformation on Symplocos lucida collected in Fukuoka Prefecture, Japan, is newly described based on morphological observations of hymenial structure and mode of basidiospore germination. This new variety differs morphologically from the type variety, particularly in the septal number of basidiospores and in the shapes and sizes of conidia formed on the medium. Colonies of this new variety are also distinguishable from those of the type variety by yeast-like growth, morphology, and color of colonies.Contribution no.178, Laboratory of Plant Parasitic Mycology, Institute of Agriculture and Forestry, University of Tsukuba, Japan  相似文献   
97.
98.
99.
Extracellular ATP synthesis on human umbilical vein endothelial cells (HUVECs) was examined, and it was found that HUVECs possess high ATP synthesis activity on the cell surface. Extracellular ATP generation was detected within 5 s after addition of ADP and inorganic phosphate and reached a maximal level at 15 s. This type of ATP synthesis was almost completely inhibited by mitochondrial H(+)-ATP synthase inhibitors (e.g., efrapeptins, resveratrol, and piceatannol), which target the F(1) catalytic domain. Oligomycin and carbonyl cyanide m-chlorophenylhydrazone, but not potassium cyanide, also inhibited extracellular ATP synthesis on HUVECs, suggesting that cell surface ATP synthase employs the transmembrane electrochemical potential difference of protons to synthesize ATP as well as mitochondrial H(+)-ATP synthase. The F(1)-targeting H(+)-ATP synthase inhibitors markedly inhibited the proliferation of HUVECs, but intracellular ATP levels in HUVECs treated with these inhibitors were only slightly affected, as shown by comparison with the control cells. Interestingly, piceatannol inhibited only partially the activation of Syk (a nonreceptor tyrosine kinase), which has been shown to play a role in a number of endothelial cell functions, including cell growth and migration. These findings suggest that H(+)-ATP synthase-like molecules on the surface of HUVECs play an important role not only in extracellular ATP synthesis but also in the proliferation of HUVECs. The present results demonstrate that the use of small molecular H(+)-ATP synthase inhibitors targeting the F(1) catalytic domain may lead to significant advances in potential antiangiogenic cancer therapies.  相似文献   
100.
Mutant copper/zinc superoxide dismutase (SOD1)-overexpressing transgenic mice, a mouse model for familial amyotrophic lateral sclerosis (ALS), provides an excellent resource for developing novel therapies for ALS. Several observations suggest that mitochondria-dependent apoptotic signaling, including caspase-9 activation, may play an important role in mutant SOD1-related neurodegeneration. To elucidate the role of caspase-9 in ALS, we examined the effects of an inhibitor of X chromosome-linked inhibitor of apoptosis (XIAP), a mammalian inhibitor of caspase-3, -7 and -9, and p35, a baculoviral broad caspase inhibitor that does not inhibit caspase-9. When expressed in spinal motor neurons of mutant SOD1 mice using transgenic techniques, XIAP attenuated disease progression without delaying onset. In contrast, p35 delayed onset without slowing disease progression. Moreover, caspase-9 was activated in spinal motor neurons of human ALS subjects. These data strongly suggest that caspase-9 plays a crucial role in disease progression of ALS and constitutes a promising therapeutic target.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号