首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   528篇
  免费   31篇
  2023年   3篇
  2022年   2篇
  2021年   11篇
  2020年   7篇
  2019年   6篇
  2018年   18篇
  2017年   7篇
  2016年   22篇
  2015年   19篇
  2014年   26篇
  2013年   41篇
  2012年   23篇
  2011年   43篇
  2010年   31篇
  2009年   14篇
  2008年   34篇
  2007年   38篇
  2006年   30篇
  2005年   25篇
  2004年   49篇
  2003年   18篇
  2002年   35篇
  2001年   6篇
  2000年   3篇
  1999年   4篇
  1998年   1篇
  1997年   3篇
  1996年   4篇
  1995年   3篇
  1992年   5篇
  1991年   2篇
  1988年   3篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1982年   2篇
  1979年   2篇
  1978年   3篇
  1977年   4篇
  1976年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
排序方式: 共有559条查询结果,搜索用时 15 毫秒
151.
152.
The thermostability of the conger eel galectin, congerin II, was improved by in vitro evolutionary protein engineering. Two rounds of random PCR mutagenesis and selection experiments increased the congerin II thermostability to a level comparative to its naturally thermostable isoform, congerin I. The crystal structures of the most thermostable double mutant, Y16S/T88I, and the related single mutants, Y16S and T88I, were determined at 2.0 angstroms, 1.8 angstroms, and 1.6 angstroms resolution, respectively. The exclusion of two interior water molecules by the Thr88Ile mutation, and the relief of adjacent conformational stress by the Tyr16Ser mutation were the major contributions to the thermostability. These features in the congerin II mutants are similar to those observed in congerin I. The natural evolution of congerin genes, with the K(A)/K(S) ratio of 2.6, was accelerated under natural selection pressures. The thermostabilizing selection pressure artificially applied to congerin II mimicked the implied natural pressure on congerin I. The results showed that the artificial pressure made congerin II partially reproduce the natural evolution of congerin I.  相似文献   
153.
Hepatic ischemia-reperfusion results in an acute inflammatory response culminating in the recruitment of activated neutrophils that directly injure hepatocytes. Recent evidence suggests that CD4+ lymphocytes may regulate this neutrophil-dependent injury, but the mechanisms by which this occurs remain to be elucidated. In the present study, we sought to determine the type of CD4+ lymphocytes recruited to the liver after ischemia-reperfusion and the manner in which these cells regulated neutrophil recruitment and tissue injury. Wild-type and CD4 knockout (CD4-/-) mice were subjected to hepatic ischemia-reperfusion. CD4+ lymphocytes were recruited in the liver within 1 h of reperfusion and remained for at least 4 h. These cells were comprised of conventional (alphabetaTCR-expressing), unconventional (gammadeltaTCR-expressing), and natural killer T cells. CD4-/- mice were then used to determine the functional role of CD4+ lymphocytes in hepatic ischemia-reperfusion injury. Compared with wild-type mice, CD4-/- mice had significantly greater liver injury, yet far less neutrophil accumulation. Adoptive transfer of CD4+ lymphocytes to CD4-/- mice recapitulated the wild-type response. In wild-type mice, neutralization of interleukin (IL)-17, a cytokine released by activated CD4+ lymphocytes, significantly reduced neutrophil recruitment in association with suppression of MIP-2 expression. Finally, oxidative burst activity of liver-recruited neutrophils was higher in CD4-/- mice compared with those from wild-type mice. These data suggest that CD4+ lymphocytes are rapidly recruited to the liver after ischemia-reperfusion and facilitate subsequent neutrophil recruitment via an IL-17-dependent mechanism. However, these cells also appear to attenuate neutrophil activation. Thus the data suggest that CD4+ lymphocytes have dual, opposing roles in the hepatic inflammatory response to ischemia-reperfusion.  相似文献   
154.
In this study, we screened for protein disulfide isomerase (PDI)-binding proteins in bovine liver microsomes under strict salt concentrations, using affinity column chromatography. One main band observed using SDS-PAGE was identified as ERp57 (one of the PDI family proteins) by LC-MS/MS analysis. The K(D) value of PDI binding to ERp57 was calculated as 5.46x10(-6)M with the BIACORE system. The interactions between PDI and ERp57 occurred specifically at their a and b domains, respectively. Interestingly, low concentrations of ERp57 enhanced the chaperone activity of PDI, while high concentrations interfered with chaperone activity. On the other hand, ERp57 did not affect the isomerase activity of PDI. Additionally, following pre-incubation of ERp57 with calreticulin (CRT), decreased interactions were observed between ERp57 and PDI, and vice versa. Based on the data, we propose that once ERp57 binds to PDI or CRT, the resultant complex inhibits further interactions. Therefore, ERp57 selectively forms a protein-folding complex with PDI or CRT in ER.  相似文献   
155.
The effect of a koji (Aspergillus awamori mut.) extract on the caffeoylquinic acid derivatives purified from sweetpotato (Ipomoea batatas L.) leaves was examined to develop the mass production of caffeic acid. A koji extract hydrolyzed the caffeoylquinic acid derivatives, chlorogenic acid, 3,4-di-O-caffeoylquinic acid, 3,5-di-O-caffeoylquinic acid, 4,5-di-O-caffeoylquinic acid and 3,4,5-tri-O-caffeoylquinic acid, to caffeic acid. Furthermore, the koji extract also converted the major polyphenolic components from sweetpotato, burdock (Arctium lappa L.), and mugwort (Artemisia indica var. maximowiczii) leaves to caffeic acid. These results suggest that the production of caffeic acid from plant resources containing caffeoylquinic acid derivatives is possible.  相似文献   
156.
INTRODUCTION: Recent studies have demonstrated the anti-inflammatory action of 15-deoxy-Delta12,14-prostaglandin J(2) (15d-PGJ(2)), a derivative of the PGD(2) metabolic pathway. Acute inflammation, including neutrophil activation, plays a critical role in the pathogenesis of ischemia-reperfusion (I/R). The aim of the present study was to determine the effect of 15d-PGJ(2) on I/R-induced gastric mucosal injury in rats.METHODS: Gastric mucosal damage was induced in male Wistar rats by clamping the celiac artery for 30 min followed by reperfusion. 15d-PGJ(2) (0.01-1.0 mg/kg) was given to the rats intraperitoneally 1 h before the vascular clamping. The area of gastric mucosal erosions (erosion index) was measured. Thiobarbituric acid reactive substances (TBARS) and tissue-associated myeloperoxidase (MPO) activity were measured in the gastric mucosa as indices of lipid peroxidation and neutrophil infiltration. The expression of tumor necrosis factor-alpha (TNF-alpha) in gastric mucosa was measured by ELISA. In addition, to elucidate whether the protective effects of 15d-PGJ(2) are related to the activation of the PPAR-gamma receptor, we also investigated the effects of a PPAR-gamma antagonist, GW9662.RESULTS: After 60 min of reperfusion, the area of gastric erosion index had significantly increased from the mean basal levels. The increase in the erosion index was significantly inhibited by pretreatment with 15d-PGJ(2) in a dose-dependent manner. On the other hand, GW9662 reversed the protective effect of 15d-PGJ(2). The concentration of TBARS and MPO activity in the gastric mucosa were both significantly increased after I/R, and pretreatment with 15d-PGJ(2) significantly reduced these increases. The TNF-alpha content was significantly higher in the I/R group than in the sham-operated group. However, the increase in TNF-alpha was significantly inhibited by pretreatment with 15d-PGJ(2).CONCLUSIONS: 15d-PGJ(2) significantly inhibited the severity of acute gastric mucosal injury induced by I/R in rats through PPAR-gamma-dependent mechanisms. This effect may be due, in part, to a reduction in the infiltration of neutrophils into the gastric mucosa, possibly via the inhibition of inflammatory cytokine.  相似文献   
157.
Recent investigations have demonstrated that the signaling of hypoxia-re-oxygenation is a major contributing pathway leading to gastric mucosal injury induced by stress, non-steroidal anti-inflammatory drugs, and Helicobacter pylori. The aim of the present study was to perform a gene expression analysis on the gastric mucosal cellular response to hypoxia-reoxygenation using a high-density oligonucleotide array. Cells were subjected to hypoxia with 95% N(2) and 5% CO(2) at 37 degrees C for 2 h. Reoxygenation was initiated by placing the cells in an environment of normoxia for 2 h. Total RNA was extracted, and differences in gene expression profiles between the normoxia and hypoxia-reoxygenation groups were investigated using a GeneChip of Rat Toxicology U34 array (Affymetrix). Hypoxia-reoxygenation up-regulated the stress-related genes (heat shock protein-70 [HSP-70], catalase). The enhanced expression of HSP-70 was confirmed by Western blot analysis. In conclusion, these results suggest that up-regulation of the HSP-70 gene after reoxygenation may play a role in maintaining cell survival and supporting cell function as a molecular chaperone.  相似文献   
158.
Mevalonate and nonmevalonate pathways for the biosynthesis of isoprene units   总被引:11,自引:0,他引:11  
Isoprenoids are synthesized by consecutive condensations of their five-carbon precursor, isopentenyl diphosphate, to its isomer, dimethylallyl diphosphate. Two pathways for these precursors are known. One is the mevalonate pathway, which operates in eucaryotes, archaebacteria, and cytosols of higher plants. The other is a recently discovered pathway, the nonmevalonate pathway, which is used by many eubacteria, green algae, and chloroplasts of higher plants. To date, five reaction steps in this new pathway and their corresponding enzymes have been identified. EC numbers of these enzymes have been assigned by the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB) and are available at http://www.chem.qmw.ac.uk/iubmb/enzyme/reaction/terp/nonMVA.html.  相似文献   
159.
160.
Benzodiazepines are commonly used as sedatives, sleeping aids, and anti‐anxiety drugs. However, chronic treatment with benzodiazepines is known to induce dependence, which is considered related to neuroplastic changes in the mesolimbic system. This study investigated the involvement of K+‐Cl? co‐transporter 2 (KCC2) in the sensitization to morphine‐induced hyperlocomotion after chronic treatment with zolpidem [a selective agonist of γ‐aminobutyric acid A‐type receptor (GABAAR) α1 subunit]. In this study, chronic treatment with zolpidem enhanced morphine‐induced hyperlocomotion, which is accompanied by the up‐regulation of KCC2 in the limbic forebrain. We also found that chronic treatment with zolpidem induced the down‐regulation of protein phosphatase‐1 (PP‐1) as well as the up‐regulation of phosphorylated protein kinase C γ (pPKCγ). Furthermore, PP‐1 directly associated with KCC2 and pPKCγ, whereas pPKCγ did not associate with KCC2. On the other hand, pre‐treatment with furosemide (a KCC2 inhibitor) suppressed the enhancing effects of zolpidem on morphine‐induced hyperlocomotion. These results suggest that the mesolimbic dopaminergic system could be amenable to neuroplastic change through a pPKCγ‐PP‐1‐KCC2 pathway by chronic treatment with zolpidem.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号