全文获取类型
收费全文 | 3859篇 |
免费 | 220篇 |
国内免费 | 2篇 |
专业分类
4081篇 |
出版年
2022年 | 21篇 |
2021年 | 40篇 |
2020年 | 23篇 |
2019年 | 45篇 |
2018年 | 64篇 |
2017年 | 46篇 |
2016年 | 59篇 |
2015年 | 95篇 |
2014年 | 138篇 |
2013年 | 247篇 |
2012年 | 242篇 |
2011年 | 215篇 |
2010年 | 147篇 |
2009年 | 131篇 |
2008年 | 228篇 |
2007年 | 252篇 |
2006年 | 238篇 |
2005年 | 203篇 |
2004年 | 210篇 |
2003年 | 176篇 |
2002年 | 179篇 |
2001年 | 99篇 |
2000年 | 91篇 |
1999年 | 95篇 |
1998年 | 37篇 |
1997年 | 27篇 |
1996年 | 20篇 |
1995年 | 30篇 |
1994年 | 24篇 |
1993年 | 23篇 |
1992年 | 56篇 |
1991年 | 59篇 |
1990年 | 57篇 |
1989年 | 55篇 |
1988年 | 55篇 |
1987年 | 43篇 |
1986年 | 45篇 |
1985年 | 48篇 |
1984年 | 28篇 |
1983年 | 28篇 |
1982年 | 19篇 |
1981年 | 14篇 |
1980年 | 12篇 |
1979年 | 13篇 |
1978年 | 17篇 |
1977年 | 9篇 |
1976年 | 11篇 |
1974年 | 10篇 |
1973年 | 9篇 |
1971年 | 8篇 |
排序方式: 共有4081条查询结果,搜索用时 11 毫秒
31.
Naoyuki Sato Tomohiro Nakayama Yoshihiro Mizutani 《Biochemical and biophysical research communications》2009,380(3):548-553
Angioid streaks (AS) are eye abnormalities caused by breaks in Bruch’s membrane. The condition is often associated with pseudoxanthoma elasticum (PXE). The ATP-binding cassette, sub-family C (CFTR/MRP), member 6 (ABCC6) is reported to be the causal gene for PXE, although there have been no reports on whether the ABCC6 gene is the causal gene for AS. The aims of this study are to isolate the causal mutations for AS using a haplotype-based case-control study. We genotyped 54 Japanese AS patients and 150 controls for 5 single-nucleotide polymorphisms (SNPs). A simple association study using each SNP and a haplotype-based case-control study were performed. Twelve patients with special haplotypes for AS were selected, and were then subjected to gene sequencing. Six variants were successfully identified as causal mutations for AS (p.R419Q, p.E422K, c.2542delG, Del_Exon23, c.3774-3775insC and p.E1427K), and 4 of these were novel. This method can be applied to both identifying susceptibility variants of multifactorial diseases and isolating mutations in single-gene diseases. 相似文献
32.
A cis-acting element and a trans-acting factor involved in the wound-induced expression of a horseradish peroxidase gene 总被引:2,自引:0,他引:2
Akiyoshi Kawaoka Tomohiro Kawamoto Masami Sekine Kazuya Yoshida Mitsuo Takano Atsuhiko Shinmyo 《The Plant journal : for cell and molecular biology》1994,6(1):87-97
The mechanisms that control the wound-induced expression of the prxC2 gene for horseradish peroxidase (HRP) have been investigated. Analysis of the regulatory properties of 5′-deleted promoters showed that a positive element involved in the response to wounding was located between −307 and −99 bp from the site of initiation of translation. In in vitro binding assays of tobacco nuclear proteins and DNA fragments of prxC2 promoter, the binding site was the Box 1 from −296 to −283 containing the CACGTG motif. To identify the functional role of Box 1, the prxC2 promoter that has been digested from the 5′ end to −289 with a disrupted Box 1 was fused to a reporter gene for β-glucuronidase (GUS). No induction of GUS activity was observed in transgenic tobacco plants with the prxC2(−289)/GUS construct. These data indicated that the expression of prxC2 in response to wounding required the Box 1 sequence from −296 to −283. Furthermore, a tobacco cDNA expression library was screened and a cDNA clone for a protein, designated TFHP-1, that bound specifically to the Box 1 sequence was identified. The putative TFHP-1 protein contains a basic region and leucine zipper (bZip) motif and a helix—loop—helix (HLH) motif. The mRNA for TFHP-1 was abundant in roots and stems, and it was not induced by wounding in leaves. In tobacco protoplasts, antisense TFHP-1 suppressed the expression of prxC2 (−529)/GUS. 相似文献
33.
Tomohiro Teraminami Atsushi Nakashima Mao Ominami Masanori Yamamoto Zhang Guo Sheng Ken Yoshikawa 《Landscape and Ecological Engineering》2013,9(2):249-257
Salix cheilophila Schneid. is a naturally occurring Salix species in Mu Us Sandy Land, Inner Mongolia, China. We focused on the morphological adaptability of S. cheilophila to sand dune burial. For morphological measurements, 32 S. cheilophila seedlings were removed from a community which was in the process of being buried by a shifting sand dune. Each seedling collected included the entire root system. We measured the number, length, and biomass of the adventitious roots, primary lateral roots, and taproot, and compared the morphological characteristics of the root system, including adventitious roots, for seedlings buried to various levels in the sand. The growth range of adventitious roots increased as the length of the buried portion of the main shoot increased. In addition, the total dry weight of all current-year shoots tended to increase gradually with increasing total dry weight of the adventitious roots. These results suggest that S. cheilophila tends to make use of the sedimentary sand layer that accompanies shifting sand dunes. However, there was no correlation between biomass or number of adventitious roots and the length of the buried part of the main shoot. Thus, S. cheilophila does not grow adventitious roots proportional to the buried part. These morphological characteristics of the root system, including the adventitious roots, may indicate that S. cheilophila has poor morphological adaptability to sand dune burial. 相似文献
34.
Mitsutoshi Nakamura Kenjiroo Matsumoto Yuta Iwamoto Takeshi Muguruma Naotaka Nakazawa Ryo Hatori Kiichiro Taniguchi Reo Maeda Kenji Matsuno 《Mechanisms of development》2013,130(2-3):169-180
Animals often show left–right (LR) asymmetry in their body structures. In some vertebrates, the mechanisms underlying LR symmetry breaking and the subsequent signals responsible for LR asymmetric development are well understood. However, in invertebrates, the molecular bases of these processes are largely unknown. Therefore, we have been studying the genetic pathway of LR asymmetric development in Drosophila. The embryonic gut is the first organ that shows directional LR asymmetry during Drosophila development. We performed a genetic screen to identify mutations affecting LR asymmetric development of the embryonic gut. From this screen, we isolated pebble (pbl), which encodes a homolog of a mammalian RhoGEF, Ect2. The laterality of the hindgut was randomized in embryos homozygous for a null mutant of pbl. Pbl is a multi-functional protein required for cytokinesis and the epithelial-to-mesenchymal transition in Drosophila. Consistent with Pbl’s role in cytokinesis, we found reduced numbers of cells in the hindgut epithelium in pbl homozygous embryos. The specific expression of pbl in the hindgut epithelium, but not in other tissues, rescued the LR defects and reduced cell number in embryonic pbl homozygotes. Embryos homozygous for string (stg), a mutant that reduces cell number through a different mechanism, also showed LR defects of the hindgut. However, the reduction in cell number in the pbl mutants was not accompanied by defects in the specification of hindgut epithelial tissues or their integrity. Based on these results, we speculate that the reduction in cell number may be one reason for the LR asymmetry defect of the pbl hindgut, although we cannot exclude contributions from other functions of Pbl, including regulation of the actin cytoskeleton through its RhoGEF activity. 相似文献
35.
Zinc deficiency states were produced in rabbit erythrocytes by experimentally induced bleeding anemia and hemolytic anemia. Parallel decreases in total zinc levels and the contents for major zinc protein, carbonic anhydrase I and II isozymes were observed in the erythrocytes. During the process of the anemias the zinc status in the erythrocytes varied remarkably and the relative increase of zinc ions other than that derived from carbonic anhydrase was observed, suggesting that the former zinc ions play an important role in forming a zinc pool in the erythrocytes under the anemic conditions. 相似文献
36.
Kazuhiko Ishihara Yusuke Goto Madoka Takai Ryosuke Matsuno Yuuki Inoue Tomohiro Konno 《Biochimica et Biophysica Acta (BBA)/General Subjects》2011
Background
Materials with excellent biocompatibility on interfaces between artificial system and biological system are needed to develop any equipments and devices in bioscience, bioengineering and medicinal science. Suppression of unfavorable biological response on the interface is most important for understanding real functions of biomolecules on the surface. So, we should design and prepare such biomaterials.Scoop of review
One of the best ways to design the biomaterials is generated from mimicking a cell membrane structure. It is composed of a phospholipid bilayered membrane and embedded proteins and polysaccharides. The surface of the cell membrane-like structure is constructed artificially by molecular integration of phospholipid polymer as platform and conjugated biomolecules. Here, it is introduced as the effectiveness of biointerface with highly biological functions observed on artificial cell membrane structure.Major conclusions
Reduction of nonspecific protein adsorption is essential for suppression of unfavorable bioresponse and achievement of versatile biomedical applications. Simultaneously, bioconjugation of biomolecules on the phospholipid polymer platform is crucial for a high-performance interface.General significance
The biointerfaces with both biocompatibility and biofunctionality based on biomolecules must be installed on advanced devices, which are applied in the fields of nanobioscience and nanomedicine.This article is part of a Special Issue entitled Nanotechnologies - Emerging Applications in Biomedicine. 相似文献37.
Sakane I Hongo K Motojima F Murayama S Mizobata T Kawata Y 《Journal of molecular biology》2007,367(4):1171-1185
In order to understand how inter-subunit association stabilizes oligomeric proteins, a single polypeptide chain variant of heptameric co-chaperonin GroES (tandem GroES) was constructed from Escherichia coli heptameric GroES by linking consecutively the C-terminal of one subunit to the N-terminal of the adjacent subunit with a small linker peptide. The tandem GroES (ESC7) showed properties similar to wild-type GroES in structural aspects and co-chaperonin activity. In unfolding and refolding equilibrium experiments using guanidine hydrochloride (Gdn-HCl) as a denaturant at a low protein concentration (50 microg ml(-1)), ESC7 showed a two-state transition with a greater resistance toward Gdn-HCl denaturation (Cm=1.95 M) compared to wild-type GroES (Cm=1.1 M). ESC7 was found to be about 10 kcal mol(-1) more stable than the wild-type GroES heptamer at 50 microg ml(-1). Kinetic unfolding and refolding experiments of ESC7 revealed that the increased stability was mainly attributed to a slower unfolding rate. Also a transient intermediate was detected in the refolding reaction. Interestingly, at the physiological GroES concentration (>1 mg ml(-1)), the free energy of unfolding for GroES heptamer exceeded that for ESC7. These results showed that at low protein concentrations (<1 mg ml(-1)), the covalent linking of subunits contributes to the stability but also complicates the refolding kinetics. At physiological concentrations of GroES, however, the oligomeric state is energetically preferred and the advantages of covalent linkage are lost. This finding highlights a possible advantage in transitioning from multi-domain proteins to oligomeric proteins with small subunits in order to improve structural and kinetic stabilities. 相似文献
38.
T Taniguchi T Mizuochi Y Banno Y Nozawa A Kobata 《The Journal of biological chemistry》1985,260(26):13941-13946
The carbohydrate structures of acid phosphatase and alpha-glucosidase secreted into culture medium by Tetrahymena pyriformis strain W were studied. Their asparagine-linked sugar chains were quantitatively liberated as radioactive oligosaccharides from their polypeptide moieties by controlled hydrazinolysis followed by N-acetylation and NaB3H4 reduction. The approximate amounts of total sugar chains liberated from 1 mol each of acid phosphatase and alpha-glucosidase were 6 and 4 mol, respectively. Paper electrophoresis revealed that only neutral oligosaccharides were obtained from both enzymes. The oligosaccharide fraction from acid phosphatase was separated into seven components by Bio-Gel P-4 column chromatography while that from alpha-glucosidase was resolved into three components. The structures of these oligosaccharides were determined by sequential glycosidase digestion in combination with methylation analysis. The sugar chains of the two enzymes can be primarily classified as high mannose-type oligosaccharides. However, they have the following characteristic features: 1) their common core is not the usual Man5 . GlcNAc2 structure, it is Man3 . GlcNAc2; 2) some of the sugar chains of acid phosphatase have 1 approximately 3 glucose residues linked to the nonreducing terminal Man alpha 1----2 residue. The structural characteristics of the sugar moieties of the two enzymes indicate that they might be produced by the so-called "alternate pathway," in which lipid-linked Glc3 . Man5 . GlcNAc2 functions as an oligosaccharide donor. 相似文献
39.
40.
Ayako Fukunaka Tomoyuki Suzuki Yayoi Kurokawa Tomohiro Yamazaki Naoko Fujiwara Kaori Ishihara Hitoshi Migaki Katsuzumi Okumura Seiji Masuda Yuko Yamaguchi-Iwai Masaya Nagao Taiho Kambe 《The Journal of biological chemistry》2009,284(45):30798-30806
The majority of CDF/ZnT zinc transporters form homo-oligomers. However, ZnT5, ZnT6, and their orthologues form hetero-oligomers in the early secretory pathway where they load zinc onto zinc-requiring enzymes and maintain secretory pathway functions. The details of this hetero-oligomerization remain to be elucidated, and much more is known about homo-oligomerization that occurs in other CDF/ZnT family proteins. Here, we addressed this issue using co-immunoprecipitation experiments, mutagenesis, and chimera studies of hZnT5 and hZnT6 in chicken DT40 cells deficient in ZnT5, ZnT6, and ZnT7 proteins. We found that hZnT5 and hZnT6 combine to form heterodimers but do not form complexes larger than heterodimers. Mutagenesis of hZnT6 indicated that the sites present in transmembrane domains II and V in which many CDF/ZnT proteins have conserved hydrophilic amino acid residues are not involved in zinc binding of hZnT6, although they are required for zinc transport in other CDF/ZnT family homo-oligomers. We also found that the long N-terminal half of hZnT5 is not necessary for its functional interaction with hZnT6, whereas the cytosolic C-terminal tail of hZnT5 is important in determining hZnT6 as a partner molecule for heterodimer formation. In DT40 cells, cZnT5 variant lacking the N-terminal half was endogenously induced during periods of endoplasmic reticulum stress and so seemed to function to supply zinc to zinc-requiring enzymes under these conditions. The results outlined here provide new information about the mechanism of action through heterodimerization of CDF/ZnT proteins that function in the early secretory pathway. 相似文献