首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1723篇
  免费   82篇
  国内免费   1篇
  2024年   1篇
  2023年   2篇
  2022年   8篇
  2021年   26篇
  2020年   13篇
  2019年   22篇
  2018年   42篇
  2017年   26篇
  2016年   35篇
  2015年   63篇
  2014年   91篇
  2013年   126篇
  2012年   156篇
  2011年   143篇
  2010年   99篇
  2009年   74篇
  2008年   135篇
  2007年   140篇
  2006年   126篇
  2005年   92篇
  2004年   118篇
  2003年   86篇
  2002年   86篇
  2001年   4篇
  2000年   5篇
  1999年   12篇
  1998年   11篇
  1997年   7篇
  1996年   5篇
  1995年   8篇
  1994年   7篇
  1993年   3篇
  1992年   8篇
  1991年   2篇
  1990年   5篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   3篇
  1985年   3篇
  1984年   3篇
  1983年   2篇
  1981年   2篇
  1980年   1篇
  1978年   1篇
排序方式: 共有1806条查询结果,搜索用时 31 毫秒
991.
In vitro and in situ enzymatic polymerization of polyhydroxyalkanoate (PHA) on two hydrophobic surfaces, a highly oriented pyrolytic graphite (HOPG) and an alkanethiol self-assembled monolayer (SAM), was studied by atomic force microscopy (AFM) and quartz crystal microbalance (QCM), using purified Ralstonia eutropha PHA synthase (PhaC(Re)) as a biocatalyst. (R)-Specific enoyl-CoA hydratase was used to prepare R-enantiomer monomers [(R)-3-hydroxyacyl-CoA] with an acyl chain length of 4-6 carbon atoms. PHA homopolymers with different side-chain lengths, poly[(R)-3-hydroxybutyrate] [P(3HB)] and poly[(R)-3-hydroxyvalerate] [P(3HV)] were successfully synthesized from such R-enantiomer monomers on HOPG substrates. After the reaction, the surface morphologies were analyzed by AFM, revealing a nanometer thick PHA film. The same biochemical polymerization process was observed on an alkanethiol (C18) SAM surface fabricated on a gold electrode using QCM. This analysis showed that a complex sequence of PhaC(Re) adsorption and PHA polymerization has occurred on the hydrophobic surface. On the basis of these observations, the possible mechanisms of the PhaC(Re)-catalyzed polymerization reaction on the surface of hydrophobic substrates are proposed.  相似文献   
992.
This study aimed to develop a sensitive and reliable immunoassay by applying a highly functional phospholipid polymer biointerface. We synthesized a phospholipid polymer--poly[2-methacryloyloxyethyl phosphorylcholine (MPC)-co-n-butyl methacrylate (BMA)-co-p-nitrophenyloxycarbonyl poly(ethylene glycol) methacrylate (MEONP)] (PMBN). MEONP contains active ester groups on the side chains for immobilization of antibodies via oxyethylene. PMBN with different compositions and oxyethylene chain lengths were synthesized; their effects on nonspecific and specific values in the immunoassay were evaluated. MPC units reduce the background by preventing nonspecific protein adsorption. MEONP units could conjugate antibodies and enhance the specific signal. The specific signal was independent of the oxyethylene chain length, but long oxyethylene chains increased the background. Specific signals corresponding to the antigen were observed with the PMBN coating, and a liner standard curve was obtained. The PMBN-coated surface maintained residual activity after long-term storage. This surface affords a low background without requiring blocking treatment and is suitable for immobilized antibodies.  相似文献   
993.
994.
SNAREs ('Soluble N-ethyl-maleimide sensitive factor attachment protein receptors') play a critical role in the membrane fusion step of the vesicular transport system in eukaryotes. The number of the genes encoding SNARE proteins is estimated to be 64 in Arabidopsis thaliana. This number is much larger than those in other eukaryotes, suggesting a complex membrane trafficking in plants. The Arabidopsis SNAREs, the SYP7 group proteins, SYP71, SYP72, and SYP73, form a plant-specific SNARE subfamily with not-yet-identified functions. We have previously reported that the SYP7 subfamily proteins are predominantly localized to the endoplasmic reticulum in the Arabidopsis suspension cultured cells under transient expression condition. However, several proteomic analyzes indicated the plasma membrane localizations of one of SYP7 subfamily proteins, SYP71. In order to confirm the expression patterns and subcellular localization of SYP7, we performed combination analyses including promoter GUS analysis, a sucrose density gradient centrifugation analysis, as well as an observation on transgenic Arabidopsis plants expressing GFP-fused SYP71 under control of its native promoter. From these analyses, we concluded that one of the SYP7 subfamily proteins, SYP71, is predominantly expressed in all vegetative tissues and mainly localized to the plasma membrane. We also found that SYP71 is localized to the endoplasmic reticulum in the dividing cells of various types of tissues.  相似文献   
995.
Protein kinase C-betaII (PKCbetaII) is an important modulator of cellular stress responses. To test the hypothesis that PKCbetaII modulates the response to myocardial ischemia-reperfusion (I/R) injury, we subjected mice to occlusion and reperfusion of the left anterior descending coronary artery. Homozygous PKCbeta-null (PKCbeta(-/-)) and wild-type mice fed the PKCbeta inhibitor ruboxistaurin displayed significantly decreased infarct size and enhanced recovery of left ventricular (LV) function and reduced markers of cellular necrosis and serum creatine phosphokinase and lactate dehydrogenase levels compared with wild-type or vehicle-treated animals after 30 min of ischemia followed by 48 h of reperfusion. Our studies revealed that membrane translocation of PKCbetaII in LV tissue was sustained after I/R and that gene deletion or pharmacological blockade of PKCbeta protected ischemic myocardium. Homozygous deletion of PKCbeta significantly diminished phosphorylation of c-Jun NH(2)-terminal mitogen-activated protein kinase and expression of activated caspase-3 in LV tissue of mice subjected to I/R. These data implicate PKCbeta in I/R-mediated myocardial injury, at least in part via phosphorylation of JNK, and suggest that blockade of PKCbeta may represent a potent strategy to protect the vulnerable myocardium.  相似文献   
996.
Oxidative stress due to iron deposition in hepatocytes or Kupffer cells contributes to the initiation and perpetuation of liver injury. The aim of this study was to clarify the association between dietary iron and liver injuries in rats. Liver injury was initiated by the administration of thioacetamide or ligation of the common bile duct in rats fed a control diet (CD) or iron-deficient diet (ID). In the acute liver injury model induced by thioacetamide, serum levels of aspartate aminotransferase and alanine aminotransferase, as well as hepatic levels of lipid peroxide and 4-hydroxynonenal, were significantly decreased in the ID group. The expression of 8-hydroxydeoxyguanosine and terminal deoxynucleotidyl transferase biotin-dUTP nick-end labeling positivity showed a similar tendency. The expression of interleukin-1beta and monocyte chemotactic protein-1 mRNA was suppressed in the ID group. In liver fibrosis induced by an 8-wk thioacetamide administration, ID suppressed collagen deposition and smooth muscle alpha-actin expression. The expressions of collagen 1A2, transforming growth factor beta, and platelet-derived growth factor receptor beta mRNA were all significantly decreased in the ID group. Liver fibrosis was additionally suppressed in the bile-duct ligation model by ID. In culture experiments, deferoxamine attenuated the activation process of rat hepatic stellate cells, a dominant producer of collagen in the liver. In conclusion, reduced dietary iron is considered to be beneficial in improving acute and chronic liver injuries by reducing oxidative stress. The results obtained in this study support the clinical usefulness of an iron-reduced diet for the improvement of liver disorders induced by chronic hepatitis C and alcoholic/nonalcoholic steatohepatitis.  相似文献   
997.
Extracellular signal-regulated kinases (ERKs) play important physiological roles in proliferation, differentiation and gene expression. ERK5 is twice the size of ERK1/2, the amino-terminal half contains the kinase domain that shares the homology with ERK1/2 and TEY activation motif, whereas the carboxy-terminal half is unique. In this study, we examined the cross-talk mechanism between G-protein-coupled receptors (GPCRs) and receptor tyrosine kinases, focusing on ERK1/2 and 5. The pretreatment of rat pheochromocytoma cells (PC12) with pertussis toxin (PTX) specifically enhanced epidermal growth factor (EGF)-induced ERK5 phosphorylation. In addition, lysophosphatidic acid (LPA) attenuated the EGF-induced ERK5 phosphorylation in LPA(1) receptor- and G(i/o)-dependent manners. On the other hand, LPA alone activated ERK1/2 via Gbetagamma subunits and Ras and potentiated EGF-induced ERK1/2 phosphorylation at late time points. These results suggest G(i/o) negatively regulates ERK5, while it positively regulates ERK1/2. LPA did not affect cAMP levels after EGF treatment, and the reagents promoting cAMP production such as forskolin and cholera toxin also attenuated the EGF-induced ERK5 phosphorylation, indicating that the inhibitory effect of LPA on ERK5 inhibition via G(i/o) is not due to inhibition of adenylyl cyclase by Galpha(i/o). However, the inhibitory effect of LPA on ERK5 was abolished in PC12 cells stably overexpressing C-terminus of GPCR kinase2 (GRK2), and overexpression of Gbeta(1) and gamma(2) subunits also suppressed ERK5 phosphorylation by EGF. In response to LPA, Gbetagamma subunits interacted with EGF receptor in a time-dependent manner. These results strongly suggest that LPA negatively regulates the EGF-induced ERK5 phosphorylation through Gbetagamma subunits.  相似文献   
998.
999.
SCO6571 protein from Streptomyces coelicolor A3(2) was overexpressed and purified using Rhodococcus erythropolis as an expressing host. Crystals of selenomethionine-substituted SCO6571 have been obtained by vapor diffusion method. SCO6571 crystals diffract to 2.3 A and were found to belong to the orthorhombic space group P2(1)2(1)2(1) with unit cell parameters a = 84.5, b = 171.6, c = 184.8 A. Six molecules in the asymmetric unit give a crystal volume per protein mass (V(M)) of 2.97 A (3) Da(-1) and solvent content of 58.6 %. The structure was solved by the single wavelength anomalous diffraction (SAD) method. SCO6571 is a TIM-barrel fold protein that assembles into a hexameric molecule with D(3) symmetry.  相似文献   
1000.
3-Metoxycarbonyl isoquinolone derivative 1 has been identified as a potent JNK inhibitor and significantly inhibited cardiac hypertrophy in a rat pressure-overload model. Herein, a series of isoquinolones with an imidazolylmethyl or a pyrazolylmethyl group at the 2-position were designed based on X-ray crystallographic analysis of the complex between the isoquinolone compound and JNK3, as wells as the relationship between compound lipophilicity (logD) and activity in a cell-based assay. The compounds prepared showed potent JNK1 inhibitory activities in a cell-based assay. Among them the isoquinolone derivative possessing 5-[(cyclopropylamino)carbonyl]-1-methyl-1H-pyrazole (16e) exhibited significant anti-hypertrophic activity at doses of more than 1mg/kg (po) in a pressure-overload model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号