首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2005篇
  免费   108篇
  国内免费   1篇
  2023年   3篇
  2022年   9篇
  2021年   30篇
  2020年   14篇
  2019年   22篇
  2018年   44篇
  2017年   29篇
  2016年   38篇
  2015年   73篇
  2014年   96篇
  2013年   168篇
  2012年   163篇
  2011年   157篇
  2010年   108篇
  2009年   79篇
  2008年   143篇
  2007年   147篇
  2006年   139篇
  2005年   102篇
  2004年   126篇
  2003年   101篇
  2002年   100篇
  2001年   19篇
  2000年   19篇
  1999年   25篇
  1998年   16篇
  1997年   9篇
  1996年   5篇
  1995年   11篇
  1994年   9篇
  1993年   8篇
  1992年   14篇
  1991年   10篇
  1990年   9篇
  1989年   7篇
  1988年   9篇
  1987年   7篇
  1986年   7篇
  1985年   7篇
  1984年   8篇
  1983年   5篇
  1982年   2篇
  1981年   3篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
  1972年   1篇
  1970年   1篇
排序方式: 共有2114条查询结果,搜索用时 15 毫秒
71.
We previously demonstrated that hDREF, a human homologue of Drosophila DNA replication-related element binding factor (dDREF), is a DNA-binding protein predominantly distributed with granular structures in the nucleus. Here, glutathione S-transferase pulldown and chemical cross-linking assays showed that the carboxyl-terminal hATC domain of hDREF, highly conserved among hAT transposase family members, possesses self-association activity. Immunoprecipitation analyses demonstrated that hDREF self-associates in vivo, dependent on hATC domain. Moreover, analyses using a series of hDREF mutants carrying amino acid substitutions in the hATC domain revealed that conserved hydrophobic amino acids are essential for self-association. Immunofluorescence studies further showed that all hDREF mutants lacking self-association activity failed to accumulate in the nucleus. Self-association-defective hDREF mutants also lost association with endogenous importin beta1. Moreover, electrophoretic gel-mobility shift assays revealed that the mutations completely abolished the DNA binding activity of hDREF. These results suggest that self-association of hDREF via the hATC domain is necessary for its nuclear accumulation and DNA binding. We also found that ZBED4/KIAA0637, another member of the human hAT family, also self-associates, again dependent on the hATC domain, with deletion resulting in loss of efficient nuclear accumulation. Thus, hATC domains of human hAT family members appear to have conserved functions in self-association that are required for nuclear accumulation.  相似文献   
72.
Thrombomodulin is a clock-controlled gene in vascular endothelial cells   总被引:1,自引:0,他引:1  
Cardiovascular diseases are closely related to circadian rhythm, which is under the control of an internal biological clock mechanism. Although a biological clock exists not only in the hypothalamus but also in each peripheral tissue, the biological relevance of the peripheral clock remains to be elucidated. In this study we searched for clock-controlled genes in vascular endothelial cells using microarray technology. The expression of a total of 229 genes was up-regulated by CLOCK/BMAL2. Among the genes that we identified, we examined the thrombomodulin (TM) gene further, because TM is an integral membrane glycoprotein that is expressed primarily in vascular endothelial cells and plays a major role in the regulation of intravascular coagulation. TM mRNA and protein expression showed a clear circadian oscillation in the mouse lung and heart. Reporter analyses, gel shift assays, and chromatin immunoprecipitation analyses using the TM promoter revealed that a heterodimer of CLOCK and BMAL2 binds directly to the E-box of the TM promoter, resulting in TM promoter transactivation. Indeed, the oscillation of TM gene expression was abolished in clock mutant mice, suggesting that TM expression is regulated by the clock gene in vivo. Finally, the phase of circadian oscillation of TM mRNA expression was altered by temporal feeding restriction, suggesting TM gene expression is regulated by the peripheral clock system. In conclusion, these data suggest that the peripheral clock in vascular endothelial cells regulates TM gene expression and that the oscillation of TM expression may contribute to the circadian variation of cardiovascular events.  相似文献   
73.
Objective: The objective was to test effects of aerobic exercise training on metabolic syndrome (MetSyn) improvement in response to weight reduction. Research Methods and Procedures: A total of 459 overweight and obese women (age, 49 ± 9 years; BMI, 28 ± 3 kg/m2) were recruited for a baseline examination to test the relationship between cardiorespiratory fitness and metabolic syndrome prevalence; among these, 67 subjects with MetSyn were treated with 14‐week weight‐loss programs, which included low‐calorie diet and aerobic exercise. The MetSyn was defined according to the Examination Committee of Criteria for “Metabolic Syndrome” in Japan. Maximal oxygen uptake (V?o 2max) during a maximal cycling test was measured as an index of cardiorespiratory fitness at baseline and after the intervention. Results: In the baseline examination, age‐ and BMI‐adjusted odds ratios for MetSyn prevalence in the low, middle, and upper thirds of V?o 2max were 1.0 (referent), 0.50 (95% confidence interval, 0.26 to 0.95), and 0.39 (95% confidence interval, 0.14 to 0.96), respectively (linear trend, p = 0.02). The adjusted odds ratios for MetSyn improvement in the two interventions with diet alone and diet plus exercise were 1.0 and 3.68 (95% confidence interval, 1.02 to 17.6; p = 0.04), respectively. Discussion: These results suggest that adding aerobic exercise training to a dietary weight‐reduction program further improves MetSyn (adjusted odds ratio, 3.68) in obese women, compared with diet alone. Further studies on an association between V?o 2max change and MetSyn improvement are needed.  相似文献   
74.
Autophagy is a response to the stress of nutrient limitation in yeast, whereby cytosolic long-lived proteins and organelles are nonselectively degraded, and the resulting macromolecules are recycled to allow new protein synthesis that is essential for survival. We recently revealed that endoplasmic reticulum (ER) stress induces autophagy. When misfolded proteins accumulate in the ER the resulting stress activates the unfolded protein response (UPR) to induce the expression of chaperones and proteins involved in the recovery process. Under conditions of ER stress, the preautophagosomal structure is assembled, and transport of autophagosomes to the vacuole is stimulated in an Atg protein-dependent manner. Interestingly, Atg1 has high kinase activity during ER stress-induced autophagy similar to the situation in starvation-induced autophagy.  相似文献   
75.
The signaling pathway of nitric oxide (NO) depends mainly on guanosine 3',5'-cyclic monophosphate (cGMP). Here we report the formation and chemical biology of a nitrated derivative of cGMP, 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP), in NO-mediated signal transduction. Immunocytochemistry demonstrated marked 8-nitro-cGMP production in various cultured cells in an NO-dependent manner. This finding was confirmed by HPLC plus electrochemical detection and tandem mass spectrometry. 8-Nitro-cGMP activated cGMP-dependent protein kinase and showed unique redox-active properties independent of cGMP activity. Formation of protein Cys-cGMP adducts by 8-nitro-cGMP was identified as a new post-translational modification, which we call protein S-guanylation. 8-Nitro-cGMP seems to regulate the redox-sensor signaling protein Keap1, via S-guanylation of the highly nucleophilic cysteine sulfhydryls of Keap1. This study reveals 8-nitro-cGMP to be a second messenger of NO and sheds light on new areas of the physiology and chemical biology of signal transduction by NO.  相似文献   
76.
77.
Ciliary beat frequency is primarily regulated by outer arm dyneins (22 S dynein). Chilcote and Johnson (Chilcote, T. J., and Johnson, K. A. (1990) J. Biol. Chem. 256, 17257-17266) previously studied isolated Tetrahymena 22 S dynein, identifying a protein p34, which showed cAMP-dependent phosphorylation. Here, we characterize the molecular biochemistry of p34 further, demonstrating that it is the functional ortholog of the 22 S dynein regulatory light chain, p29, in Paramecium. p34, thiophosphorylated in isolated axonemes in the presence of cAMP, co-purified with 22 S dynein and not with inner arm dynein (14 S dynein). Isolated 22 S dynein containing phosphorylated p34 showed approximately 70% increase in in vitro microtubule translocation velocity compared with its unphosphorylated counterpart. Extracted p34 rebound to isolated 22 S dynein from either Tetrahymena or Paramecium but not to 14 S dynein from either ciliate. Binding of radiolabeled p34 to 22 S dynein was competitive with p29. Phosphorylated p34 was not present in axonemes isolated from a mutant lacking outer arms. Two-dimensional gel electrophoresis followed by phosphorimaging revealed at least five phosphorylated p34-related spots, consistent with multiple phosphorylation sites in p34 or perhaps multiple isoforms of p34. These new features suggest that a class of outer arm dynein light chains including p34 regulates microtubule sliding velocity and consequently ciliary beat frequency through phosphorylation.  相似文献   
78.
Lipid-peptide interaction has been investigated using cationic amphiphilic alpha-helical peptides and systematically varying their hydrophobic-hydrophilic balance (HHB). The influence of the peptides on neutral and acidic liposomes was examined by 1) Trp fluorescence quenched by brominated phospholipid, 2) membrane-clearing ability, 3) size determination of liposomes by dynamic light scattering, 4) morphological observation by electron microscopy, and 5) ability to form planar lipid bilayers from channels. The peptides examined consist of hydrophobic Leu and hydrophilic Lys residues with ratios 13:5, 11:7, 9:9, 7:11, and 5:13 (abbreviated as Hels 13-5, 11-7, 9-9, 7-11, and 5-13, respectively; Kiyota, T., S. Lee, and G. Sugihara. 1996. Biochemistry. 35:13196-13204). The most hydrophobic peptide (Hel 13-5) induced a twisted ribbon-like fibril structure for egg PC liposomes. In a 3/1 (egg PC/egg PG) lipid mixture, Hel 13-5 addition caused fusion of the liposomes. Hel 13-5 formed ion channels in neutral lipid bilayer (egg PE/egg PC = 7/3) at low peptide concentrations, but not in an acidic bilayer (egg PE/brain PS = 7/3). The peptides with hydrophobicity less than Hel 13-5 (Hels 11-7 and Hel 9-9) were able to partially immerse their hydrophobic part of the amphiphilic helix in lipid bilayers and fragment liposome to small bicelles or micelles, and then the bicelles aggregated to form a larger assembly. Peptides Hel 11-7 and Hel 9-9 each formed strong ion channels. Peptides (Hel 7-11 and Hel 5-13) with a more hydrophilic HHB interacted with an acidic lipid bilayer by charge interaction, in which the former immerses the hydrophobic part in lipid bilayer, and the latter did not immerse, and formed large assemblies by aggregation of original liposomes. The present study clearly showed that hydrophobic-hydrophilic balance of a peptide is a crucial factor in understanding lipid-peptide interactions.  相似文献   
79.
80.
Two Tetrahymena kinesin-like proteins (klps) of the kinesin II subfamily, Kin1 and Kin2, were first identified by Brown et al. [1999: Mol Biol Cell 10: 3081-3096] and shown to be involved in ciliary morphogenesis probably as molecular motors in intraciliary transport (ICT). Using Tetrahymena genomic DNA as a template, we cloned Kin5, another kinesin II subfamily member. Kin5 is upregulated upon deciliation, suggesting that Kin5 is a ciliary protein. Kin5 is most closely related to Osm3, a Caenorhabditis elegans kinesin II; Osm3 and Kin5 have a 56% identity, which rises to 60.4% in the motor domain and a 45% identity in a 60 amino acid region of the C-terminal FERM (4.1, Ezrin, Radixin, Moesin) domain, not present in Kin1 or Kin2, which we hypothesize to be a critical domain either for dimerization or for cargo recognition in ICT. An antibody to a peptide sequence from the tail region of Kin5 localizes in a punctate pattern along the ciliary axoneme, colocalizing with an antibody to the raft protein IFT139. These findings suggest that Kin5 is an ICT motor like Osm3. Osm3 orthologs apparently transport membrane proteins and Kin5 may be the homodimeric kinesin II that performs this function in Tetrahymena cilia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号