首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1206篇
  免费   125篇
  2022年   10篇
  2021年   18篇
  2020年   4篇
  2019年   7篇
  2018年   22篇
  2017年   13篇
  2016年   24篇
  2015年   40篇
  2014年   44篇
  2013年   71篇
  2012年   88篇
  2011年   68篇
  2010年   44篇
  2009年   50篇
  2008年   99篇
  2007年   75篇
  2006年   69篇
  2005年   72篇
  2004年   83篇
  2003年   87篇
  2002年   61篇
  2001年   16篇
  2000年   23篇
  1999年   20篇
  1998年   18篇
  1997年   14篇
  1996年   11篇
  1995年   16篇
  1994年   15篇
  1993年   10篇
  1992年   13篇
  1991年   11篇
  1990年   10篇
  1989年   14篇
  1988年   9篇
  1987年   7篇
  1986年   6篇
  1985年   5篇
  1984年   7篇
  1983年   5篇
  1982年   11篇
  1981年   8篇
  1979年   2篇
  1978年   3篇
  1977年   3篇
  1975年   6篇
  1974年   2篇
  1972年   3篇
  1970年   4篇
  1969年   3篇
排序方式: 共有1331条查询结果,搜索用时 178 毫秒
21.
BACKGROUND: Cell cycle progression requires the activity of protein kinases and phosphatases at critical points in the cell cycle in all eukaryotes. We have previously reported that the dis2(+) and sds2(+) genes of fission yeast encode redundant catalytic subunits of a type 1-like protein phosphatase. The sds22(+) gene was shown to be essential for cell viability and to interact genetically with dis2(+) and sds21(+). RESULTS: Here we show by immunoprecipitation that the sds22 protein physically interacts with the dis2 and sds21 proteins, and that sds22-associated phosphatase activity has altered substrate specificity, The loss of sds22 function by a temperature sensitive mutation leads to cell cycle arrest at mid-mitosis, at which point cdc2-dependent histone Hl kinase activity is high while sds22-dependent H1 phosphatase activity is low. To examine the unusual properties of sds22 protein structure, we analyzed a collection of sds22 deletion and point mutants by a variety of functional criteria. CONCLUSION: We propose that sds22 is a regulatory subunit of the dis2/sds21 phosphatase catalytic subunits and that sds22-bound phosphatase carries a key phosphatase activity essential for the progression from metaphase to anaphase. Mutational analysis indicates that dis2/sds21 interacts with the central repetitive domain of sds22, while the C-terminal and central regions of sds22 may be involved in subcellular targeting and the N-terminus is important for stability.  相似文献   
22.
An enrichment broth was developed for the efficient isolation of Escherichia coli O157 from radish sprouts. The broth was buffered peptone water containing 0.5% sodium thioglycolate (STG-BPW), which was designed to allow growth of E. coli O157 in starved and unstarved states. However, this medium suppressed the growth of non-carbohydrate-fermenting obligate aerobes whose colonial appearance on sorbitol MacConkey agar containing cefixime and tellurite (CT-SMAC) resembled that of E. coli O157. Both starved and unstarved cells of E. coli O157 experimentally inoculated into radish sprouts were successfully recovered with STG-BPW enrichment in all cases, most of which showed marked disappearance of E. coli O157-like colonies on CT-SMAC.  相似文献   
23.
Abstract Mouse monoclonal antibody (mAb) Pgf-II specific for a 72-kDa major cell-surface protein (72K-CSP) derived from Porphyromonas gingivalis OMZ 409 was prepared. Immunoblotting analysis revealed that mAb Pgf-II reacted with 72K-CSP but not with 41-kDa fimbrial subunit protein (41K-fimbrilin) derived from P. gingivalis 381. Electron microscopic observation revealed that P. gingivalis OMZ 409 possessed peritrichous, thin fimbriae on their surface. Immunogold electron microscopy also demonstrated that mAb Pgf-II bound to the 72K-CSP examined with the gold particles arranged along the fibril array originating from the cell surface of the bacteria. These findings suggested that P. gingivalis 72K-CSP was identifiable as another fimbriae (termed Pg-II fimbriae) different from the fimbriae (termed Pg-I fimbriae) composed of a 41K-fimbrilin. Using multipin peptide synthesis technology, 102 sequential overlapping peptides covering the entire 514 amino-acid stretch of Pg-II fimbriae were synthesised. Seven immunodominant regions within Pg-II fimbrial protein molecule, which definitely reacted with the serum of patients with periodontal diseases, were detected.  相似文献   
24.
The influence of ionic strength on the isometric tension, stiffness, shortening velocity and ATPase activity of glycerol-treated rabbit psoas muscle fiber in the presence and the absence of Ca2+ has been studied. When the ionic strength of an activating solution (containing Mg2+-ATP and Ca2+) was decreased by varying the KCl concentration from 120 to 5 mM at 20 degrees C, the isometric tension and stiffness increased by 30% and 50%, respectively. The ATPase activity increased 3-fold, while the shortening velocity decreased to one-fourth. At 6 degrees C, similar results were obtained. These results suggest that at low ionic strengths ATP is hydrolyzed predominantly without dissociation of myosin cross-bridges from F-actin. In the absence of Ca2+, with decreasing KCl concentration the isometric tension and stiffness developed remarkably at 20 degrees C. However, the ATPase activity and shortening velocity were very low. At low ionic strength, even in the absence of Ca2+ myosin heads are bound to thin filaments. The development of the tension and stiffness were greatly reduced at 6 degrees C or at physiological ionic strength.  相似文献   
25.
26.
Reaction of methyl α-d-glucopyranoside and methyl α-d-mannopyranoside with alkaline hydrogen peroxide and a ferrous salt, at room temperature and below, afforded the corresponding d-glycosiduronic acids. On dehydration, the acids gave the corresponding gamma lactones, with a shift of the pyranoid ring to a furanoid ring. Surprisingly, the glycosidic methyl group was retained during the oxidation reactions and pyranose-furanose interconversions. This retention is rationalized by a mechanism involving formation of a pseudo-acyclic intermediate. Another unexpected reaction was the conversion of slightly moist methyl d-glucopyranosiduronolactone syrup, on standing for 5–6 days at room temperature, into crystalline d-glucofuranurono-6,3-lactone, and of methyl α-d-mannopyranosidurono-6,3-lactone into crystalline d-mannofuranurono-6,3-lactone.  相似文献   
27.
Fission Yeast DNA topoisomerase II (165 kD) consists of an enzymatically active 125-kD core, approximately 10-kD NH2-terminal and 30-kD COOH-terminal domains. The question addressed in the present study is what is the role of the topo II termini. Although deletion of either the NH2 or the COOH terminus is viable, deletion of both termini is lethal; the termini share an essential role for viability. We show here that topo II phosphorylation sites are localized in the terminal domains, but dephosphorylated topo II is still active. The topo II terminal sequences are required for nuclear localization; topo II double terminal deletion mutants are deficient for nuclear targeting, whereas wild-type and single deletion mutant topo IIs are transported into the nucleus with different efficiencies. Functional subdomains in the NH2 terminus are further dissected; we identified a 15 amino acid nuclear localization sequence (NLS) which is essential for viability and nuclear localization when the COOH terminus is deleted. This NLS could be substituted with SV-40 large T-antigen NLS. Two other functional subdomains were found; a non-essential acidic stretch which is phosphorylated and apparently enhances the nuclear localization and an essential hydrophilic stretch of unknown function. Motifs similar to these three NH2-terminal subdomains are also found in the COOH terminus. Our results support the possibility that phosphorylation of topo II does not play an essential role in fission yeast.  相似文献   
28.
29.
A full-length cDNA encoding a subunit of phosphoenolpyruvate carboxylase (PEPC) was isolated from a developing seed expression library of the C3 plant Glycine max. The corresponding mRNA is present at similar levels in leaf, stem, root and developing seed. Two potential start codons exist, and the activity of protein initiated from the first such codon could be subject to regulation by protein kinase. Sequence comparison shows a similar upstream start codon in the case of the Ppc2 gene from Mesembryanthemum crystallinum, previously assumed to lack the sequences necessary for phosphorylation. The soybean encoded protein tends to resemble other C3-type PEPC proteins more closely than those implicated in C4 or crassulacean acid metabolism.  相似文献   
30.
Fission yeast centromeres vary in size but are organized in a similar fashion. Each consists of two distinct domains, namely, the approximately 15-kilobase (kb) central region (cnt+imr), containing chromosome-specific low copy number sequences, and 20- to 100-kb outer surrounding sequences (otr) with highly repetitive motifs common to all centromeres. The central region consists of an inner asymmetric sequence flanked by inverted repeats that exhibit strict identity with each other. Nucleotide changes in the left repeat are always accompanied with the same changes in the right. The chromatin structure of the central region is unusual. A nucleosomal nuclease digestion pattern formed on unstable plasmids but not on stable chromosome. DNase I hypersensitive sites correlate with the location of tRNA genes in the central region. Autonomously replicating sequences are also present in the central region. The behavior of truncated minichromosomes suggested that the central region is essential, but not sufficient, to confer transmission stability. A portion of the outer repetitive region is also required. A larger outer region is necessary to ensure correct meiotic behavior. Fluorescence in situ hybridization identified individual cens. In the interphase, they cluster near the nuclear periphery. The central sequence (cnt+imr) may play a role in positioning individual chromosomes within the nucleus, whereas the outer regions (otr) may interact with each other to form the higher-order complex structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号