首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   796篇
  免费   56篇
  2023年   2篇
  2022年   6篇
  2021年   13篇
  2020年   3篇
  2019年   7篇
  2018年   16篇
  2017年   12篇
  2016年   22篇
  2015年   34篇
  2014年   27篇
  2013年   49篇
  2012年   65篇
  2011年   49篇
  2010年   32篇
  2009年   35篇
  2008年   73篇
  2007年   50篇
  2006年   43篇
  2005年   54篇
  2004年   62篇
  2003年   66篇
  2002年   39篇
  2001年   2篇
  2000年   3篇
  1999年   6篇
  1998年   13篇
  1997年   10篇
  1996年   4篇
  1995年   8篇
  1994年   9篇
  1993年   4篇
  1992年   4篇
  1991年   2篇
  1990年   4篇
  1989年   4篇
  1988年   2篇
  1987年   1篇
  1984年   4篇
  1983年   2篇
  1982年   6篇
  1981年   3篇
  1979年   1篇
  1978年   1篇
排序方式: 共有852条查询结果,搜索用时 234 毫秒
151.
In creatine kinases (CKs), the amino acid residue-96 is a strictly conserved arginine. This residue is not directly associated with substrate binding, but it is located close to the binding site of the substrate creatine. On the other hand, the residue-96 is known to be involved in expression in the substrate specificity of various other phosphagen (guanidino) kinases, since each enzyme has a specific residue at this position: arginine kinase (Tyr), glycocyamine kinase (Ile), taurocyamine kinase (His) and lombricine kinase (Lys). To gain a greater understanding of the role of residue-96 in CKs, we replaced this residue in zebra fish Danio rerio cytoplasmic CK with other 19 amino acids, and expressed these constructs in Escherichia coli. All the twenty recombinant enzymes, including the wild-type, were obtained as soluble form, and their activities were determined in the forward direction. Compared with the activity of wild-type, the R96K mutant showed significant activity (8.3% to the wild-type), but 10 mutants (R96Y, A, S, E, H, T, F, C, V and N) showed a weak activity (0.056–1.0%). In the remaining mutants (R96Q, G, M, P, L, W, D and I), the activity was less than 0.05%. Our mutagenesis studies indicated that Arg-96 in Danio CK can be substituted for partially by Lys, but other replacements caused remarkable loss of activity. From careful inspection of the crystal structures (transition state analog complex (TSAC) and open state) of Torpedo cytoplasmic CK, we found that the side chain of R96 forms hydrogen bonds with A339 and D340 only in the TSAC structure. Based on the assumption that CKs consist of four dynamic domains (domains 1–3, and fixed domain), the above hydrogen bonds act to link putative domains 1 and 3 in TSAC structure. We suggest that residue-96 in CK and equivalent residues in other phosphagen kinases, which are structurally similar, have dual roles: (1) one involves in distinguishing guanidino substrates, and (2) the other plays a key role in organizing the hydrogen-bond network around residue-96 which offers an appropriate active center for the high catalytic turnover. The mode of development of the network appears to be unique each phosphagen kinase, reflecting evolution of each enzyme.  相似文献   
152.
The gH of CMV is a major target for strain-specific neutralizing antibodies. To verify whether there is a correlation between HLA-DR type and strain-specific antibodies, antibodies against CMV gH in potential donors and recipients for renal transplantation were investigated. Among 471 subjects, 404 (86%) showed reactivity to CMV gH, but no antibodies against gH were detected in 67 (14%) subjects. The positive rates were over 80% in most HLA subpopulations. Fewer subjects with HLA-DR10 and DR11 had antibodies to CMV gH than did those without HLA-DR10 and DR11. HLA-DR10 and DR11 may be associated with fewer/non-responders for strain-specific neutralizing antibodies.  相似文献   
153.
Rice with LD-type cytoplasmic male sterility (CMS) possesses the cytoplasm of ‘Lead Rice’ and its fertility is recovered by a nuclear fertility restorer gene Rf1. Rf1 promotes processing of a CMS-associated mitochondrial RNA of atp6–orf79, which consists of atp6 and orf79, in BT-CMS with the cytoplasm of ‘Chinsurah Boro II’. In this study, we found that LD-cytoplasm contained a sequence variant of orf79 downstream of atp6. Northern blot analysis showed that atp6–orf79 RNA of LD-cytoplasm was co-transcribed and was processed in the presence of Rf1 in the same manner as in BT-cytoplasm. Western blot analysis showed that the ORF79 peptide did not accumulate in an LD-CMS line, while ORF79 accumulated in a BT-CMS line and was diminished by Rf1. These results suggest that accumulation of ORF79 is not the cause of CMS in LD-cytoplasm and the mechanism of male-sterility induction/fertility restoration in LD-CMS is different from that in BT-CMS.  相似文献   
154.
Prolongation of cell survival through prevention of apoptosis is considered to be a significant factor leading to anabolic responses in bone. The current studies were carried out to determine the role of the small GTPase, RhoA, in osteoblast apoptosis, since RhoA has been found to be critical for cell survival in other tissues. We investigated the effects of inhibitors and activators of RhoA signaling on osteoblast apoptosis. In addition, we assessed the relationship of this pathway to parathyroid hormone (PTH) effects on apoptotic signaling and cell survival. RhoA is activated by geranylgeranylation, which promotes its membrane anchoring. In serum‐starved MC3T3‐E1 osteoblastic cells, inhibition of geranylgeranylation with geranylgeranyl transferase I inhibitors increased activity of caspase‐3, a component step in the apoptosis cascade, and increased cell death. Dominant negative RhoA and Y27632, an inhibitor of the RhoA effector Rho kinase, also increased caspase‐3 activity. A geranylgeranyl group donor, geranylgeraniol, antagonized the effect of the geranylgeranyl tranferase I inhibitor GGTI‐2166, but could not overcome the effect of the Rho kinase inhibitor. PTH 1‐34, a potent anti‐apoptotic agent, completely antagonized the stimulatory effects of GGTI‐2166, dominant negative RhoA, and Y27632, on caspase‐3 activity. The results suggest that RhoA signaling is essential for osteoblastic cell survival but that the survival effects of PTH 1‐34 are independent of this pathway. J. Cell. Biochem. 106: 896–902, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
155.
Rad51, Rad52, and replication protein-A (RPA) play crucial roles in the repair of DNA double-strand breaks in Saccharomyces cerevisiae. Rad51 mediates DNA strand exchange, a key reaction in DNA recombination. Rad52 recruits Rad51 into single-stranded DNAs (ssDNAs) that are saturated with RPA. Rad52 also promotes annealing of ssDNA strands that are complexed with RPA. Specific protein-protein interactions are involved in these reactions. Here we report new biochemical characteristics of these protein interactions. First, Rad52-RPA interaction requires multiple molecules of RPA to be associated with ssDNA, suggesting that multiple contacts between the Rad52 ring and RPA-ssDNA filament are needed for stable binding. Second, RPA-t11, which is a recombination-deficient mutant of RPA, displays a defect in interacting with Rad52 in the presence of salt above 50 mM, explaining the defect in Rad52-mediated ssDNA annealing in the presence of this mutation. Third, ssDNA annealing promoted by Rad52 is preceded by aggregation of multiple RPA-ssDNA complexes with Rad52, and Rad51 inhibits this aggregation. These results suggest a regulatory role for Rad51 that suppresses ssDNA annealing and facilitates DNA strand invasion. Finally, the Rad51-double-stranded DNA complex disrupts Rad52-RPA interaction in ssDNA and titrates Rad52 from RPA. This suggests an additional regulatory role for Rad51 following DNA strand invasion, where Rad51-double-stranded DNA may inhibit illegitimate second-end capture to ensure the error-free repair of a DNA double-strand break.  相似文献   
156.
N-Glycosylation of integrin α5β1 plays a crucial role in cell spreading, cell migration, ligand binding, and dimer formation, but the detailed mechanisms by which N-glycosylation mediates these functions remain unclear. In a previous study, we showed that three potential N-glycosylation sites (α5S3–5) on the β-propeller of the α5 subunit are essential to the functional expression of the subunit. In particular, site 5 (α5S5) is the most important for its expression on the cell surface. In this study, the function of the N-glycans on the integrin β1 subunit was investigated using sequential site-directed mutagenesis to remove the combined putative N-glycosylation sites. Removal of the N-glycosylation sites on the I-like domain of the β1 subunit (i.e. the Δ4-6 mutant) decreased both the level of expression and heterodimeric formation, resulting in inhibition of cell spreading. Interestingly, cell spreading was observed only when the β1 subunit possessed these three N-glycosylation sites (i.e. the S4-6 mutant). Furthermore, the S4-6 mutant could form heterodimers with either α5S3-5 or α5S5 mutant of the α5 subunit. Taken together, the results of the present study reveal for the first time that N-glycosylation of the I-like domain of the β1 subunit is essential to both the heterodimer formation and biological function of the subunit. Moreover, because the α5S3-5/β1S4-6 mutant represents the minimal N-glycosylation required for functional expression of the β1 subunit, it might also be useful for the study of molecular structures.Integrin is a heterodimeric glycoprotein that consists of both an α and a β subunit (1). The interaction between integrin and the extracellular matrix is essential to both physiologic and pathologic events, such as cell migration, development, cell viability, immune homeostasis, and tumorigenesis (2, 3). Among the integrin superfamily, β1 integrin can combine with 12 distinct α subunits (α1–11, αv) to form heterodimers, thereby acquiring a wide variety of ligand specificity (1, 4). Integrins are thought to be regulated by inside-out signaling mechanisms that provoke conformational changes, which modulate the affinity of integrin for the ligand (5). However, an increasing body of evidence suggests that cell-surface carbohydrates mediate a variety of interactions between integrin and its extracellular environment, thereby affecting integrin activity and possibly tumor metastasis as well (68).Guo et al. (9) reported that an increase in β1–6-GlcNAc sugar chains on the integrin β1 subunit stimulated cell migration. In addition, elevated sialylation of the β1 subunit, because of Ras-induced STGal-I transferase activity, also induced cell migration (10, 11). Conversely, cell migration and spreading were reduced by the addition of a bisecting GlcNAc, which is a product of N-acetylglucosaminyltransferase III (GnT-III),2 to the α5β1 and α3β1 integrins (12, 13). Alterations of N-glycans on integrins might also regulate their cis interactions with membrane-associated proteins, including the epidermal growth factor receptor, the galectin family, and the tetraspanin family of proteins (1419).In addition to the positive and negative regulatory effects of N-glycan, several research groups have reported that N-glycans must be present on integrin α5β1 for the αβ heterodimer formation and proper integrin-matrix interactions. Consistent with this hypothesis, in the presence of the glycosylation inhibitor, tunicamycin, normal integrin-substrate binding and transport to the cell surface are inhibited (20). Moreover, treatment of purified integrin with N-glycosidase F blocked both the inherent association of the subunits and the interaction between integrin and fibronectin (FN) (21). These results suggest that N-glycosylation is essential to the functional expression of α5β1. However, because integrin α5β1 contains 26 potential N-linked glycosylation sites, 14 in the α subunit and 12 in the β subunit, identification of the sites that are essential to its biological functions is key to understanding the molecular mechanisms by which N-glycans alter integrin function. Recently, our group determined that N-glycosylation of the β-propeller domain on the α5 subunit is essential to both heterodimerization and biological functions of the subunit. Furthermore, we determined that sites 3–5 are the most important sites for α5 subunit-mediated cell spreading and migration on FN (22). The purpose of this study was to clarify the roles of N-glycosylation of the β1 subunit. Therefore, we performed combined substitutions in the putative N-glycosylation sites by replacement of asparagine residues with glutamine residues. We subsequently introduced these mutated genes into β1-deficient epithelial cells (GE11). The results of these mutation experiments revealed that the N-glycosylation sites on the I-like domain of the β1 subunit, sites number 4–6 (S4-6), are essential to both heterodimer formation and biological functions, such as cell spreading.  相似文献   
157.
158.
Conformationally restricted 3-anilino-4-(3-indolyl)maleimide derivatives were designed and synthesized aiming at discovery of novel protein kinase Cbeta (PKCbeta)-selective inhibitors possessing oral bioavailability. Among them, compounds having a fused five-membered ring at the indole 1,2-position inhibited PKCbeta2 with IC50 of nM-order and showed good oral bioavailability. One of the most potent compounds was found to be PKCbeta-selective over other 6 isozymes and exhibited ameliorative effects in a rat diabetic retinopathy model via oral route.  相似文献   
159.
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号