首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   816篇
  免费   59篇
  2023年   2篇
  2022年   6篇
  2021年   13篇
  2020年   3篇
  2019年   7篇
  2018年   16篇
  2017年   13篇
  2016年   22篇
  2015年   34篇
  2014年   29篇
  2013年   53篇
  2012年   65篇
  2011年   50篇
  2010年   33篇
  2009年   35篇
  2008年   73篇
  2007年   50篇
  2006年   43篇
  2005年   55篇
  2004年   62篇
  2003年   66篇
  2002年   41篇
  2001年   5篇
  2000年   5篇
  1999年   9篇
  1998年   13篇
  1997年   11篇
  1996年   4篇
  1995年   8篇
  1994年   10篇
  1993年   5篇
  1992年   4篇
  1991年   2篇
  1990年   4篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1984年   4篇
  1983年   2篇
  1982年   6篇
  1981年   3篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有875条查询结果,搜索用时 31 毫秒
91.
p38 MAP kinase activation is known to be deleterious not only to mitochondria but also to contractile function. Therefore, p38 MAP kinase inhibition therapy represents a promising approach in preventing reperfusion injury in the heart. However, reversal of p38 MAP kinase-mediated contractile dysfunction may disrupt the fragile sarcolemma of ischemic-reperfused myocytes. We, therefore, hypothesized that the beneficial effect of p38 MAP kinase inhibition during reperfusion can be enhanced when contractility is simultaneously blocked. Isolated and perfused rat hearts were paced at 330 rpm and subjected to 20 min of ischemia followed by reperfusion. p38 MAP kinase was activated after ischemia and early during reperfusion (<30 min). Treatment with the p38 MAP kinase inhibitor SB-203580 (10 microM) for 30 min during reperfusion, but not the c-Jun NH(2)-terminal kinase inhibitor SP-600125 (10 microM), improved contractility but increased creatine kinase release and infarct size. Cotreatment with SB-203580 and the contractile blocker 2,3-butanedione monoxime (BDM, 20 mM) or the ultra-short-acting beta-blocker esmorol (0.15 mM) for the first 30 min during reperfusion significantly reduced creatine kinase release and infarct size. In vitro mitochondrial ATP generation and myocardial ATP content were significantly increased in the heart cotreated with SB-203580 and BDM during reperfusion. Dystrophin was translocated from the sarcolemma during ischemia and reperfusion. SB-203580 increased accumulation of Evans blue dye in myocytes depleted of sarcolemmal dystrophin during reperfusion, whereas cotreatment with BDM facilitated restoration of sarcolemmal dystrophin and mitigated sarcolemmal damage after withdrawal of BDM. These results suggest that treatment with SB-203580 during reperfusion aggravates myocyte necrosis but concomitant blockade of contractile force unmasks cardioprotective effects of SB-203580.  相似文献   
92.
Plants have mechanisms for repairing and tolerating detrimental effects by various DNA damaging agents. A tolerance pathway that has been predicted to be present in higher plants is translesion synthesis (TLS), which is catalyzed by polymerases. In Arabidopsis (Arabidopsis thaliana), however, the only gene known to be involved in TLS is the Arabidopsis homolog of REV3, AtREV3, which is a putative catalytic subunit of Arabidopsis DNA polymerase zeta. A disrupted mutant of AtREV3, rev3, was previously found to be highly sensitive to ultraviolet-B (UV-B) and various DNA damaging agents. REV1 and REV7 are thought to be components of translesion synthesis in plants. In this study, we identified the Arabidopsis homologs of REV1 and REV7 (AtREV1 and AtREV7). Several mutants carrying disrupted AtREV1 and AtREV7 genes were isolated from Arabidopsis T-DNA-inserted lines. An AtREV1-disrupted mutant, rev1, was found to be moderately sensitive to UV-B and DNA cross-linkers. A rev1rev3 double mutant, like rev3, showed high sensitivity to UV-B, gamma-rays, and DNA cross-linkers. An AtREV7-disrupted mutant, rev7, was possibly sensitive to cis-diamminedichloroplatinum(II), a kind of DNA cross-linker, but it was not sensitive to acute UV-B and gamma-ray irradiation. On the other hand, the aerial growth of rev7, like the aerial growth of rev1 and rev3, was inhibited by long-term UV-B. These results suggest that a TLS mechanism exists in a higher plant and show that AtREV1 and AtREV7 have important roles in tolerating exposure to DNA-damaging agents.  相似文献   
93.
94.
Dey M  Cao C  Dar AC  Tamura T  Ozato K  Sicheri F  Dever TE 《Cell》2005,122(6):901-913
The antiviral protein kinase PKR inhibits protein synthesis by phosphorylating the translation initiation factor eIF2alpha on Ser51. Binding of double-stranded RNA to the regulatory domains of PKR promotes dimerization, autophosphorylation, and the functional activation of the kinase. Herein, we identify mutations that activate PKR in the absence of its regulatory domains and map the mutations to a recently identified dimerization surface on the kinase catalytic domain. Mutations of other residues on this surface block PKR autophosphorylation and eIF2alpha phosphorylation, while mutating Thr446, an autophosphorylation site within the catalytic-domain activation segment, impairs eIF2alpha phosphorylation and viral pseudosubstrate binding. Mutational analysis of catalytic-domain residues preferentially conserved in the eIF2alpha kinase family identifies helix alphaG as critical for the specific recognition of eIF2alpha. We propose an ordered mechanism of PKR activation in which catalytic-domain dimerization triggers Thr446 autophosphorylation and specific eIF2alpha substrate recognition.  相似文献   
95.
A general molecular imprinting approach is proposed to synthesize artificial enzymes to mimic the family of cyclic amide amidohydrolases which share similar active site and catalytic mechanism. The artificial enzymes were constructed by co-polymerizing 4(5)-vinylimidazole-Co2+-methacrylic acid clusters with divinylbenzene micro-spheres in the presence of corresponding substrates. The artificial enzymes mimicked creatininase and hydantoinase by showing specific affinity towards the corresponding substrates in buffer. The artificial hydantoinase also showed specific affinity towards corresponding substrate in organic solvent, and catalyzed the hydrolysis of hydantoin.  相似文献   
96.
We characterized the expression profiles of LjHb1 and LjHb2, non-symbiotic hemoglobin (non-sym-Hb) genes of Lotus japonicus. Although LjHb1 and LjHb2 showed 77% homology in their cDNA sequences, LjHb2 is located in a unique position in the phylogenetic tree of plant Hbs. The 5'-upstream regions of both genes contain the motif AAAGGG at a position similar to that in promoters of other non-sym-Hb genes. Expression profiles obtained by using quantitative RT-PCR showed that LjHb1 and LjHb2 were expressed in all tissues of mature plants, and expression was enhanced in mature root nodules. LjHb1 was strongly induced under both hypoxic and cold conditions, and by the application of nitric oxide (NO) donor, whereas LjHb2 was induced only by the application of sucrose. LjHb1 was also induced transiently by the inoculation with the symbiotic rhizobium Mesorhizobium loti MAFF303099. Observations using fluorescence microscopy revealed the induction of LjHb1 expression corresponded to the generation of NO. These results suggest that non-sym-Hb and NO have important roles in stress adaptation and in the early stage of legume-rhizobium symbiosis.  相似文献   
97.
BACKGROUND: Follicular gastritis is thought to be caused by Helicobacter pylori infection. However, the pathophysiology of it remains unclear. MATERIALS AND METHODS: We assessed gastric acidity in 15 patients with follicular gastritis, aged 20-37 years, using a 24-hour intragastric pH-metry, as well as by histologic and serologic evaluations; and compared it with that in other age-matched groups: 18 cases of H. pylori-positive antrum-predominant gastritis, 12 of pangastritis, and 24 H. pylori-negative normals. In eight cases with follicular gastritis, it was re-assessed 6 months after the eradication therapy for H. pylori. RESULTS: During nighttime, the percentage of time with intragastric pH above 3.0 in follicular gastritis was significantly higher than that in normals (p<.0001), and in antrum-predominant gastritis (p<.001), but was comparable with that in pangastritis. In the daytime period, this parameter in follicular gastritis was significantly higher than that in normal (p<.001), in antrum-predominant gastritis (p<.001), and in pangastritis (p<.05). Marked mononuclear cell and neutrophil infiltration but no apparent glandular atrophy were observed in both the antrum and corpus. Serum pepsinogen I/II ratio was significantly lower in follicular gastritis than that in normals (p<.0001) and in antrum-predominant gastritis (p<.001), whereas serum gastrin was significantly higher than that in normals (p<.0001), in antrum-predominant gastritis (p<.01) and in pangastritis (p<.05). After eradication for H. pylori, all of the parameters in follicular gastritis were altered to the same ranges as those in normals. CONCLUSIONS: In follicular gastritis, gastric acidity is significantly reduced, but can be normalized by eradication of H. pylori. It can thus be speculated that inflammatory cytokines or H. pylori-infection-induced prostaglandins might strongly inhibit gastric acid secretion in follicular gastritis.  相似文献   
98.
In DNA damage responses, the Fanconi anemia (FA) protein, FancD2, is targeted to chromatin and forms nuclear foci following its monoubiquitination, a process likely catalyzed by the FA core complex. Here, we show that a chicken FancD2-ubiquitin fusion protein, carrying a Lys-Arg substitution removing the natural monoubiquitination site (D2KR-Ub), could reverse cisplatin hypersensitivity and localize to chromatin in FANCD2-deficient DT40 cells. Importantly, the chromatin targeting was dependent on three core complex components as well as the hydrophobic surface of ubiquitin that may direct protein-protein interactions. Furthermore, a constitutively chromatin bound fusion of D2KR-histone H2B could complement cisplatin sensitivity in FANCD2- but not FANCC-, FANCG-, or FANCL-deficient cells. Thus these core complex components have an additional function in the DNA repair, which is independent of the monoubiquitination and chromatin targeting of FancD2. These results define functional consequences of FancD2 monoubiquitination and reveal previously hidden functions for the FA protein core complex.  相似文献   
99.
100.
Two major metabolites in humans of blonanserin, 2-(4-ethyl-1-piperazinyl)-4-(4-fluorophenyl)-5,6,7,8,9,10-hexahydrocycloocta-[b]pyridine (code name AD-5423), were synthesized. The first, 7-hydroxylated AD-5423, was synthesized through a four-step process starting from 4-fluorobenzoylacetonitrile (1), and the second, 8-hydroxylated AD-5423, a nine-step process also from 1. The optical resolution, structures, and receptor binding properties of the metabolites were documented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号