首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   720篇
  免费   43篇
  2023年   2篇
  2022年   2篇
  2021年   13篇
  2020年   3篇
  2019年   10篇
  2018年   17篇
  2017年   15篇
  2016年   18篇
  2015年   28篇
  2014年   36篇
  2013年   36篇
  2012年   45篇
  2011年   64篇
  2010年   29篇
  2009年   34篇
  2008年   60篇
  2007年   63篇
  2006年   51篇
  2005年   40篇
  2004年   50篇
  2003年   38篇
  2002年   31篇
  2001年   1篇
  2000年   1篇
  1999年   6篇
  1998年   8篇
  1997年   9篇
  1996年   7篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   4篇
  1991年   3篇
  1990年   2篇
  1989年   5篇
  1988年   3篇
  1987年   1篇
  1986年   4篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1977年   4篇
  1976年   1篇
  1974年   3篇
  1972年   1篇
排序方式: 共有763条查询结果,搜索用时 734 毫秒
681.
The role of p38 mitogen-activated protein kinase (MAPK) on vacuole formation in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells was examined. LPS definitely induced the formation of vacuoles in RAW 264.7 cells and SB202190 as a p38 specific inhibitor also induced slight vacuole formation. The simultaneous treatment with LPS and SB202190 induced many more vacuoles in RAW 264.7 cells than the treatment with LPS or SB202190 alone, and the vacuoles were extraordinarily large in size. On the other hand, an inactive inhibitor of p38 MAPK did not augment LPS-induced vacuole formation. Further, the inhibitors of other MAPKs and nuclear factor (NF)-kappaB pathways did not affect it. The extraordinarily large vacuoles in RAW 264.7 cells treated with LPS and SB202190 were possibly formed via fusion of small vacuoles. However, SB202190 did not augment vacuole formation in CpG DNA or interferon (IFN)-gamma-stimulated RAW 264.7 cells. The role of p38 MAPK in the vacuole formation in LPS-stimulated macrophages is discussed.  相似文献   
682.
We have developed the hyperprocessing technique to evaluate the stability of the cloverleaf shape of pre-transfer RNA (pre-tRNA). Application of this strategy to hyperprocessible human tyrosine pre-tRNA indicated that the natural intron sequence did not contribute to stabilization of the cloverleaf shape of this pre-tRNA, while the artificial intron with elongated anticodon-stem completely inhibited hyperprocessing of it. Our data suggested that the contemporary intron sequence may be a vestige of the ancient pre-biotic world, but not has been retained as a temporal stabilizer of the pre-tRNA before the base modifications.  相似文献   
683.
684.
NELL1 is a secretory osteogenic protein containing several structural motifs that suggest that it functions as an extracellular matrix component. To determine the mechanisms underlying NELL1-induced osteoblast differentiation, we examined the cell-adhesive activity of NELL1 using a series of recombinant NELL1 proteins. We demonstrated that NELL1 promoted osteoblastic cell adhesion through at least three cell-binding domains located in the C-terminal region of NELL1. Adhesion of cells to NELL1 was strongly inhibited by function-blocking antibodies against integrin α3 and β1 subunits, suggesting that osteoblastic cells adhered to NELL1 through integrin α3β1. Further, focal adhesion kinase activation is involved in NELL1 signaling.  相似文献   
685.
In the studies of Escherichia coli (E. coli), metabolomics analyses have mainly been performed using steady state culture. However, to analyze the dynamic changes in cellular metabolism, we performed a profiling of concentration of metabolites by using batch culture. As a first step, we focused on glucose uptake and the behavior of the first metabolite, G6P (glucose-6-phosphate). A computational formula was derived to express the glucose uptake rate by a single cell from two kinds of experimental data, extracellular glucose concentration and cell growth, being simulated by Cell Illustrator. In addition, average concentration of G6P has been measured by CE-MS. The existence of another carbon source was suggested from the computational result. After careful comparison between cell growth, G6P concentration, and the computationally obtained curve of glucose uptake rate, we predicted the consumption of glycogen in lag phase and its accumulation as an energy source in an E. coli cell for the next proliferation. We confirmed our prediction experimentally. This behavior indicates the importance of glycogen participation in the lag phase for the growth of E. coli. This article is part of a Special Issue entitled: Computational Methods for Protein Interaction and Structural Prediction.  相似文献   
686.
Bone defects caused by traumatic bone loss or tumor dissection are now treated with auto- or allo-bone graft, and also occasionally by artificial bone transplantation, particularly in the case of large bone defects. However, artificial bones often exhibit poor affinity to host bones followed by bony union failure. Thus therapies combining artificial bones with growth factors have been sought. Here we report that platelet derived growth factor bb (PDGFBB) promotes a significant increase in migration of PDGF receptor α (PDGFRα)-positive mesenchymal stem cells/pre-osteoblastic cells into artificial bone in vivo. Growth factors such as transforming growth factor beta (TGFβ) and hepatocyte growth factor (HGF) reportedly inhibit osteoblast differentiation; however, PDGFBB did not exhibit such inhibitory effects and in fact stimulated osteoblast differentiation in vitro, suggesting that combining artificial bones with PDGFBB treatment could promote host cell migration into artificial bones without inhibiting osteoblastogenesis.  相似文献   
687.
IL-21 is a pleiotropic cytokine that regulates T-cell and B-cell differentiation, NK-cell activation, and dendritic cell functions. IL-21 activates the JAK-STAT, ERK, and PI3K pathways. We report here that Ape1/Ref-1 has an essential role in IL-21-induced cell growth signal transduction. Overexpression of Ape1/Ref-1 enhances IL-21-induced cell proliferation, but it is suppressed by overexpressing an N-terminal deletion mutant of Ape1/Ref-1 that lacks the redox domain. Furthermore, knockdown of the Ape1/Ref-1 mRNA dramatically compromises IL-21-induced ERK1/2 activation and cell proliferation with increasing cell death. These impaired activities are recovered by the re-expression of Ape1/Ref-1 in the knockdown cells. Our findings are the first demonstration that Ape1/Ref-1 is an indispensable molecule for the IL-21-mediated signal transduction through ERK1/2 activation.  相似文献   
688.
Epidemiologic studies indicate that the risks for major age-related debilities including coronary heart disease, diabetes, and age-related macular degeneration (AMD) are diminished in people who consume lower glycemic index (GI) diets, but lack of a unifying physiobiochemical mechanism that explains the salutary effect is a barrier to implementing dietary practices that capture the benefits of consuming lower GI diets. We established a simple murine model of age-related retinal lesions that precede AMD (hereafter called AMD-like lesions). We found that consuming a higher GI diet promotes these AMD-like lesions. However, mice that consumed the lower vs. higher GI diet had significantly reduced frequency (P < 0.02) and severity (P < 0.05) of hallmark age-related retinal lesions such as basal deposits. Consuming higher GI diets was associated with > 3 fold higher accumulation of advanced glycation end products (AGEs) in retina, lens, liver, and brain in the age-matched mice, suggesting that higher GI diets induce systemic glycative stress that is etiologic for lesions. Data from live cell and cell-free systems show that the ubiquitin-proteasome system (UPS) and lysosome/autophagy pathway [lysosomal proteolytic system (LPS)] are involved in the degradation of AGEs. Glycatively modified substrates were degraded significantly slower than unmodified substrates by the UPS. Compounding the detriments of glycative stress, AGE modification of ubiquitin and ubiquitin-conjugating enzymes impaired UPS activities. Furthermore, ubiquitin conjugates and AGEs accumulate and are found in lysosomes when cells are glycatively stressed or the UPS or LPS/autophagy are inhibited, indicating that the UPS and LPS interact with one another to degrade AGEs. Together, these data explain why AGEs accumulate as glycative stress increases.  相似文献   
689.

Background

High-throughput sequencing, such as ribonucleic acid sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) analyses, enables various features of organisms to be compared through tag counts. Recent studies have demonstrated that the normalization step for RNA-seq data is critical for a more accurate subsequent analysis of differential gene expression. Development of a more robust normalization method is desirable for identifying the true difference in tag count data.

Results

We describe a strategy for normalizing tag count data, focusing on RNA-seq. The key concept is to remove data assigned as potential differentially expressed genes (DEGs) before calculating the normalization factor. Several R packages for identifying DEGs are currently available, and each package uses its own normalization method and gene ranking algorithm. We compared a total of eight package combinations: four R packages (edgeR, DESeq, baySeq, and NBPSeq) with their default normalization settings and with our normalization strategy. Many synthetic datasets under various scenarios were evaluated on the basis of the area under the curve (AUC) as a measure for both sensitivity and specificity. We found that packages using our strategy in the data normalization step overall performed well. This result was also observed for a real experimental dataset.

Conclusion

Our results showed that the elimination of potential DEGs is essential for more accurate normalization of RNA-seq data. The concept of this normalization strategy can widely be applied to other types of tag count data and to microarray data.  相似文献   
690.
The LPS-mediated lethality of NC/Nga mice, having fewer NKT cells, was examined by using d-galactosamine (d-GalN)-sensitization. The NC/Nga mice were not killed by a simultaneous administration of d-GalN and LPS whereas all C57BL/6 (B6) control mice were killed. The injection of d-GalN and LPS failed to elevate the levels of serum alanine aminotransferase and caspase 3 in the liver tissues of NC/Nga mice. Further, the nitric oxide (NO) level of the d-GalN- and LPS-injected NC/Nga mice was much lower than those of the B6 mice. The expression of an inducible NO synthase (iNOS) was significantly reduced in the livers of NC/Nga mice. However, there was no significant difference in LPS-induced TNF-α production between B6 mice and NC/Nga mice. The NC/Nga mice had an impaired expression of IFN-γ protein and mRNA in response to d-GalN and LPS. The pretreatment with α-galactosylceramide (α-GalCer), which activates Vα14(+) NKT cells and induces the production of IFN-γ, rendered NC/Nga mice more susceptible to the LPS-mediated lethality. The livers of NC/Nga mice had fewer NKT cells compared to B6 mice. Taken together, it is suggested that the resistance of NC/Nga mice to the LPS-mediated lethality with d-GalN sensitization depended on the impaired IFN-γ production caused by fewer NKT cells and reduced NO production that followed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号