l-Methionine gamma-lyase (EC 4.4.1.11, MGL_Pp) from Pseudomonas putida is a multifunctional enzyme, which belongs to the gamma-family of pyridoxal-5'-phosphate (PLP) dependent enzymes. In this report, we demonstrate that the three-dimensional structure of MGL_Pp has been completely solved by the molecular replacement method to an R-factor of 20.4% at 1.8 A resolution. Detailed information of the overall structure of MGL_Pp supplies a clear picture of the substrate- and PLP-binding pockets. Tyr59 and Arg61 of neighbouring subunits, which are strongly conserved in other gamma-family enzymes, contact the phosphate group of PLP. These residues are important as the main anchor within the active site. Lys240, Asp241 and Arg61 of one partner monomer and Tyr114 and Cys116 of the other partner monomer form a hydrogen-bond network in the MGL active site which is specific for MGLs. It is also suggested that electrostatic interactions at the subunit interface are involved in the stabilization of the structural conformation. The detailed structure will facilitate the development of MGL_Pp as an anticancer drug. 相似文献
We synthesized a novel linker (1) with biotin, alkyne and amino groups for the identification of target proteins using a small molecule that contains an azide group (azide probe). The alkyne in the linker bound the azide probe via an azide-alkyne Huisgen cycloaddition. A protein cross-linker effectively bound the conjugate of the linker and an azide probe with a target protein. The covalently bound complex was detected by western blotting. Linker 1 was applied to a model system using an abscisic acid receptor, RCAR/PYR/PYL (PYL). Cross-linked complexes of linker 1, the azide probes and the target proteins were successfully visualized by western blotting. This method of target protein identification was more effective than a previously developed method that uses a second linker with biotin, alkyne, and benzophenone (linker 2) that acts to photo-crosslink target proteins. The system developed in this study is a method for identifying the target proteins of small bioactive molecules and is different from photo-affinity labelling. 相似文献
SPINDLY (SPY) encodes an O-linked N-acetylglucosamine transferase that is considered to be a negative regulator of gibberellin (GA) signaling through an unknown mechanism. To understand the function of SPY in GA signaling in rice, we isolated a rice SPINDLY homolog (OsSPY) and produced knockdown transgenic plants in which OsSPY expression was reduced by introducing its antisense or RNAi construct. In knockdown plants, the enhanced elongation of lower internodes was correlated with decreased levels of OsSPY expression, similar to the spindly phenotype of Arabidopsis spy mutants, suggesting that OsSPY also functions as a negative factor in GA signaling in rice. The suppressive function of OsSPY in GA signaling was supported by the findings that the dwarfism was partially rescued and OsGA20ox2 (GA20 oxidase) expression was reduced in GA-deficient and GA-insensitive mutants by the knockdown of OsSPY function. The suppression of OsSPY function in a GA-insensitive mutant, gid2, also caused an increase in the phosphorylation of a rice DELLA protein, SLR1, but did not change the amount of SLR1. This indicates that the function of OsSPY in GA signaling is not via changes in the amount or stability of SLR1, but probably involves control of the suppressive function of SLR1. In addition to the GA-related phenotypes, OsSPY antisense and RNAi plants showed increased lamina joint bending, which is a brassinosteroid-related phenotype, indicating that OsSPY may play roles both in GA signaling and in the brassinosteroid pathway. 相似文献
The Maillard Reaction (MR) rate below the glass transition temperature (T(g)) for various model glassy food systems was studied at temperatures between 40 degrees C and 70 degrees C. As a sample, freeze-dried glucose and lysine systems embedded in various glassy matrices (e.g., polyvinylpyrrolodone and trehalose) were used, and the MR rate below the T(g) was compared among the various glassy matrices. The extent of MR was estimated spectrophotometrically from the optical density at 280 nm (OD(280)), and the MR rate (k(280)) was determined as a pseudo zero order reaction rate from the time course of OD(280). Although k(280) was described by the Arrhenius plot, the temperature dependence of k(280) was almost the same and the intercept was different among the matrices. From the comparison of k(280), it was suggested that the MR rate in glassy matrix was affected not only by the T(g), but also by the hydrogen bonding between MR reactants and glassy matrix. 相似文献
Drebrin A, a major neuronal actin-binding protein, regulates the dendritic spine shapes of neurons. Here, we have cloned and characterized a novel mouse cDNA clone encoding a truncated form of drebrin A, named s-drebrin A. Analysis of the genomic organization of the mouse drebrin gene (Dbn1), which mapped to the central portion of chromosome 13, revealed that isoforms including s-drebrin A are generated by alternative splicing from a single drebrin gene. The s-drebrin A mRNA was expressed in the brain, but not in non-neuronal tissues. The s-drebrin A expression was barely detected in the embryonic brain, but was upregulated during postnatal development of the brain. Overexpression of GFP-tagged s-drebrin A in fibroblasts showed it to be associated with actin filaments and with changes in actin cytoskeleton organization. These findings suggest that s-drebrin A has a role in spine morphogenesis, possibly by competing the actin-binding activity with drebrin A. 相似文献
Apical constriction is critical for epithelial morphogenesis, including neural tube formation. Vertebrate apical constriction is induced by di‐phosphorylated myosin light chain (ppMLC)‐driven contraction of actomyosin‐based circumferential rings (CRs), also known as perijunctional actomyosin rings, around apical junctional complexes (AJCs), mainly consisting of tight junctions (TJs) and adherens junctions (AJs). Here, we revealed a ppMLC‐triggered system at TJ‐associated CRs for vertebrate apical constriction involving microtubules, LUZP1, and myosin phosphatase. We first identified LUZP1 via unbiased screening of microtubule‐associated proteins in the AJC‐enriched fraction. In cultured epithelial cells, LUZP1 was found localized at TJ‐, but not at AJ‐, associated CRs, and LUZP1 knockout resulted in apical constriction defects with a significant reduction in ppMLC levels within CRs. A series of assays revealed that ppMLC promotes the recruitment of LUZP1 to TJ‐associated CRs, where LUZP1 spatiotemporally inhibits myosin phosphatase in a microtubule‐facilitated manner. Our results uncovered a hitherto unknown microtubule‐LUZP1 association at TJ‐associated CRs that inhibits myosin phosphatase, contributing significantly to the understanding of vertebrate apical constriction. 相似文献
Amino acids can serve as regulatory molecules that modulate numerous cellular functions. Branched chain amino acids (BCAAs) are known to exert influences on cellular metabolism, amino acid transport, protein turn over, and gene expression. However, the mechanisms involved in the specific effect of BCAAs have not been clarified. BCAA supplementation therapy is a current treatment for patients with liver cirrhosis, therefore, specific BCAA activities should be examined. Hepatocyte growth factor (HGF) is considered to be a pleiotropic factor, and is reported to modulate gene expression and to stimulate the proliferation and functions of many cell types, including hepatocytes. A potential application of HGF for several types of diseases has been postulated. Here, we describe the potential of BCAAs as a therapeutic agent that acts through the induction of HGF production in the liver. 相似文献
We investigated how p38alpha mitogen-activated protein kinase (p38) is related to kainate-induced epilepsy and neuronal damages, by using the mice with a single copy disruption of the p38 alpha gene (p38alpha(+/-)). Mortality rate and seizure score of p38alpha(+/-) mice administered with kainate were significantly reduced compared with the case of wild-type (WT) mice. This was clearly supported by the electroencephalography data in which kainate-induced seizure duration and frequency in the brain of p38alpha(+/-) mice were significantly suppressed compared to those of WT mice. As a consequence of seizure, kainate induced delayed neuronal damages in parallel with astrocytic growth in the hippocampus and ectopic innervation of the mossy fibers into the stratum oriens in the CA3 region of hippocampus in WT mice, whose changes were moderate in p38alpha(+/-) mice. Likewise, kainate-induced phosphorylation of calcium/calmodulin-dependent kinase II in the hippocampus of p38alpha (+/-) mice was significantly decreased compared to that of WT mice. These results suggest that p38alpha signaling pathway plays an important role in epileptic seizure and excitotoxicity. 相似文献
Indigo is an insoluble blue dye historically used for dyeing textiles. A traditional approach for indigo dyeing involves microbial reduction of polygonum indigo to solubilize it under alkaline conditions; however, the mechanism by which microorganisms reduce indigo remains poorly understood. Here, we aimed to identify an enzyme that catalyzes indigo reduction; for this purpose, from alkaline liquor that performed microbial reduction of polygonum indigo, we isolated indigo carmine-reducing microorganisms. All isolates were facultative anaerobic and alkali-tolerant Bacillus spp. An isolate termed AO1 was found to be an alkaliphile that preferentially grows at pH 9.0–11.0 and at 30–35 °C. We focused on flavin-dependent azoreductase as a possible enzyme for indigo carmine reduction and identified its gene (azoA) in Bacillus sp. AO1 using homology-based strategies. azoA was monocistronic but clustered with ABC transporter genes. Primary sequence identities were < 50% between the azoA product (AzoA) and previously characterized flavin-dependent azoreductases. AzoA was heterologously produced as a flavoprotein tolerant to alkaline and organic solvents. The enzyme efficiently reduced indigo carmine in an NADH-dependent manner and showed strict specificity for electron acceptors. Notably, AzoA oxidized NADH in the presence, but not the absence, of indigo. The reaction rate was enhanced by adding organic solvents to solubilize indigo. Absorption spectrum analysis showed that indigo absorption decreased during the reaction. These observations suggest that AzoA can reduce indigo in vitro and potentially in Bacillus sp. AO1. This is the first study that identified an indigo reductase, providing a new insight into a traditional approach for indigo dyeing.