Background: The treatment and prevention of glucocorticoid (GC)-induced osteoporosis have been controversial in premenopausal women during their childbearing years.Objective: This study assessed the incidence and risk factors for symptomatic vertebral fracture in women of childbearing age newly treated with high-dose GC.Methods: An observational cohort study was conducted at the rheumatic center of Shimoshizu National Hospital in Chiba, Japan, from 1986 to 2006. The prevalence of symptomatic vertebral fractures, as determined by x-rays, was assessed in premenopausal (aged <50 years) women with collagen vascular disease newly treated with high-dose GC (≥20 mg/d prednisolone equivalent) compared with their counterparts who did not receive GC. Differences in the incidences of vertebral fractures were compared between groups by the Kaplan-Meier method and evaluated by the log-rank test. Hazard ratios (HRs) with 95% CIs were estimated using the Cox proportional hazards regression model.Results: A total of 373 women were assessed: 292 patients in the high-dose GC treatment group (mean [SD] initial age, 32.4 [8.2] years; initial dose, 43.8 [14.9] mg/d; follow-up time, 124.2 [75.4] months) and 81 patients in the non-GC control group (initial age, 39.3 [7.8] years; follow-up time, 106.5 [79.7] months). Symptomatic vertebral fractures occurred more frequently in the high-dose GC group (11.3%) than in the non-GC group (1.2%). Using the Cox model, the adjusted HR for the high-dose GC group was 13.96 (95% CI, 1.87–104.22) relative to the non-GC group. In the high-dose GC group, Kaplan-Meier analyses revealed that the incidence of fractures in women in their forties was significantly higher in comparison with those in their twenties (P < 0.001) and thirties (P < 0.05), and that the incidence of fractures in those who consumed alcohol (>80 g/wk of pure alcohol) was significantly higher than in those who did not (P < 0.05). The Cox model also revealed that the risk was independently higher with every 10-year increment of initial age (HR = 2.27; 95% CI, 1.46–3.53), with every GC dose increase (HR = 2.28; 95% CI, 1.58–3.31), and with each 1-gram decrease of cumulative GC dose (HR = 0.95; 95% CI, 0.93–0.98).Conclusions: In this study, high-dose GC use was associated with a significantly high prevalence of symptomatic vertebral fractures in premenopausal women with collagen vascular disease during their childbearing years. However, the fracture risk was relatively low in women of childbearing age, especially those in their twenties and thirties during the early years of treatment. 相似文献
Indigo is an insoluble blue dye historically used for dyeing textiles. A traditional approach for indigo dyeing involves microbial reduction of polygonum indigo to solubilize it under alkaline conditions; however, the mechanism by which microorganisms reduce indigo remains poorly understood. Here, we aimed to identify an enzyme that catalyzes indigo reduction; for this purpose, from alkaline liquor that performed microbial reduction of polygonum indigo, we isolated indigo carmine-reducing microorganisms. All isolates were facultative anaerobic and alkali-tolerant Bacillus spp. An isolate termed AO1 was found to be an alkaliphile that preferentially grows at pH 9.0–11.0 and at 30–35 °C. We focused on flavin-dependent azoreductase as a possible enzyme for indigo carmine reduction and identified its gene (azoA) in Bacillus sp. AO1 using homology-based strategies. azoA was monocistronic but clustered with ABC transporter genes. Primary sequence identities were < 50% between the azoA product (AzoA) and previously characterized flavin-dependent azoreductases. AzoA was heterologously produced as a flavoprotein tolerant to alkaline and organic solvents. The enzyme efficiently reduced indigo carmine in an NADH-dependent manner and showed strict specificity for electron acceptors. Notably, AzoA oxidized NADH in the presence, but not the absence, of indigo. The reaction rate was enhanced by adding organic solvents to solubilize indigo. Absorption spectrum analysis showed that indigo absorption decreased during the reaction. These observations suggest that AzoA can reduce indigo in vitro and potentially in Bacillus sp. AO1. This is the first study that identified an indigo reductase, providing a new insight into a traditional approach for indigo dyeing.
Tight control of protein synthesis is necessary for cells to respond and adapt to environmental changes rapidly. Eukaryotic translation initiation factor (eIF) 2B, the guanine nucleotide exchange factor for eIF2, is a key target of translation control at the initiation step. The nucleotide exchange activity of eIF2B is inhibited by the stress-induced phosphorylation of eIF2. As a result, the level of active GTP-bound eIF2 is lowered, and protein synthesis is attenuated. eIF2B is a large multi-subunit complex composed of five different subunits, and all five of the subunits are the gene products responsible for the neurodegenerative disease, leukoencephalopathy with vanishing white matter. However, the overall structure of eIF2B has remained unresolved, due to the difficulty in preparing a sufficient amount of the eIF2B complex. To overcome this problem, we established the recombinant expression and purification method for eIF2B from the fission yeast Schizosaccharomyces pombe. All five of the eIF2B subunits were co-expressed and reconstructed into the complex in Escherichia coli cells. The complex was successfully purified with a high yield. This recombinant eIF2B complex contains each subunit in an equimolar ratio, and the size exclusion chromatography analysis suggests it forms a heterodecamer, consistent with recent reports. This eIF2B increased protein synthesis in the reconstituted in vitro human translation system. In addition, disease-linked mutations led to subunit dissociation. Furthermore, we crystallized this functional recombinant eIF2B, and the crystals diffracted to 3.0 Å resolution. 相似文献
l-Methionine gamma-lyase (EC 4.4.1.11, MGL_Pp) from Pseudomonas putida is a multifunctional enzyme, which belongs to the gamma-family of pyridoxal-5'-phosphate (PLP) dependent enzymes. In this report, we demonstrate that the three-dimensional structure of MGL_Pp has been completely solved by the molecular replacement method to an R-factor of 20.4% at 1.8 A resolution. Detailed information of the overall structure of MGL_Pp supplies a clear picture of the substrate- and PLP-binding pockets. Tyr59 and Arg61 of neighbouring subunits, which are strongly conserved in other gamma-family enzymes, contact the phosphate group of PLP. These residues are important as the main anchor within the active site. Lys240, Asp241 and Arg61 of one partner monomer and Tyr114 and Cys116 of the other partner monomer form a hydrogen-bond network in the MGL active site which is specific for MGLs. It is also suggested that electrostatic interactions at the subunit interface are involved in the stabilization of the structural conformation. The detailed structure will facilitate the development of MGL_Pp as an anticancer drug. 相似文献
To understand the role of prostaglandin (PG) receptor EP2 (Ptger2) signaling in ovulation and fertilization, we investigated time-dependent expression profiles in wild-type (WT) and Ptger2−/− cumuli before and after ovulation by using microarrays. We prepared cumulus cells from mice just before and 3, 9 and 14 h after human chorionic gonadotropin injection. Key genes including cAMP-related and epidermal growth factor (EGF) genes, as well as extracellular matrix- (ECM-) related and chemokine genes were up-regulated in WT cumuli at 3 h and 14 h, respectively. Ptger2 deficiency differently affected the expression of many of the key genes at 3 h and 14 h. These results indicate that the gene expression profile of cumulus cells greatly differs before and after ovulation, and in each situation, PGE2-EP2 signaling plays a critical role in cAMP-regulated gene expression in the cumulus cells under physiological conditions. 相似文献
Drebrin A, a major neuronal actin-binding protein, regulates the dendritic spine shapes of neurons. Here, we have cloned and characterized a novel mouse cDNA clone encoding a truncated form of drebrin A, named s-drebrin A. Analysis of the genomic organization of the mouse drebrin gene (Dbn1), which mapped to the central portion of chromosome 13, revealed that isoforms including s-drebrin A are generated by alternative splicing from a single drebrin gene. The s-drebrin A mRNA was expressed in the brain, but not in non-neuronal tissues. The s-drebrin A expression was barely detected in the embryonic brain, but was upregulated during postnatal development of the brain. Overexpression of GFP-tagged s-drebrin A in fibroblasts showed it to be associated with actin filaments and with changes in actin cytoskeleton organization. These findings suggest that s-drebrin A has a role in spine morphogenesis, possibly by competing the actin-binding activity with drebrin A. 相似文献
The present study focused on examining the efficacy of feeding a rutin-glucose derivative (G-rutin) to inhibit glycation reactions that can occur in muscle, kidney and plasma proteins of diabetic rats. Both thiobarbituric acid-reactive substance levels and protein carbonyl contents in muscle and kidney were significantly (p < 0.05) reduced in streptozotocin-induced diabetic rats fed G-rutin supplemented diet, compared to diabetic rats fed control diet. The N-fructoselysine content in muscle and kidney, a biomarker of early glycation reaction, was markedly (p < 0.05) increased by diabetes, but significantly (p < 0.05) reduced in diabetic rats fed G-rutin. Advanced glycation end-products (AGEs) in serum and kidney protein were measured by immunoblot using anti-AGE antibody, and were also reduced in diabetic rats fed dietary G-rutin. Feeding G-rutin also slightly inhibited aldose reductase activity in these animals. These results demonstrate for the first time that dietary G-rutin consumption can provide potential health benefits that are related to the inhibition of tissue glycation reactions common to diabetes. 相似文献
We previously reported that fibroblast growth factor 2 (FGF2) facilitated the differentiation of transplanted bone marrow
cells (BMCs) into hepatocytes. Our earlier study also demonstrated that administration of FGF2 in combination with bone marrow
transplantation (BMT) synergistically activated tumor necrosis factor-alpha signaling and significantly improved liver function
and prognosis more than BMT alone. However, the way that it affected the extracellular matrix remained unclear. Here, we investigated
the effect of FGF2 treatment together with BMT on liver fibrosis in mice treated with carbon tetrachloride (CCl4). Transplantation of BMCs and concurrent treatment with FGF2 caused a statistically significant reduction in CCl4-induced liver fibrosis that was accompanied by strong expression of matrix metalloproteinase 9 as compared with FGF2-only
treatment or BMT alone. Moreover, in this process, the proliferation of bone-marrow-derived cells was accelerated without
causing apoptosis. Thus, the administration of FGF2 in combination with BMT synergistically improves CCl4-induced liver fibrosis in mice. This treatment has the potential of being an effective therapy for patients with liver cirrhosis.
This study was supported by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (nos. 16390211
and 16590597) and for translational research from the Ministry of Health, Labor and Welfare (H-trans-5 and H17-Special-015). 相似文献
Sphingosine 1-phosphate (S1P), a bioactive lipid mediator, stimulates proliferation and contractility in hepatic stellate cells, the principal matrix-producing cells in the liver, and inhibits proliferation via S1P receptor 2 (S1P(2)) in hepatocytes in rats in vitro. A potential role of S1P and S1P(2) in liver regeneration and fibrosis was examined in S1P(2)-deficient mice. Nuclear 5-bromo-2'-deoxy-uridine labeling, proliferating cell nuclear antigen (PCNA) staining in hepatocytes, and the ratio of liver weight to body weight were enhanced at 48 h in S1P(2)-deficient mice after a single carbon tetrachloride (CCl(4)) injection. After dimethylnitrosamine (DMN) administration with a lethal dose, PCNA staining in hepatocytes was enhanced at 48 h and survival rate was higher in S1P(2)-deficient mice. Serum aminotransferase level was unaltered in those mice compared with wild-type mice in both CCl(4)- and DMN-induced liver injury, suggesting that S1P(2) inactivation accelerated regeneration not as a response to enhanced liver damage. After chronic CCl(4) administration, fibrosis was less apparent, with reduced expression of smooth-muscle alpha-actin-positive cells in the livers of S1P(2)-deficient mice, suggesting that S1P(2) inactivation ameliorated CCl(4)-induced fibrosis due to the decreased accumulation of hepatic stellate cells. Thus, S1P plays a significant role in regeneration and fibrosis after liver injury via S1P(2). 相似文献
Treatment with epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), such as gefitinib and erlotinib, has achieved high clinical response rates in patients with non–small cell lung cancers (NSCLCs). However, over time, most tumors develop acquired resistance to EGFR-TKIs, which is associated with the secondary EGFR T790M resistance mutation in about half the cases. Currently there are no effective treatment options for patients with this resistance mutation. Here we identified two novel HLA-A*0201 (A2)-restricted T cell epitopes containing the mutated methionine residue of the EGFR T790M mutation, T790M-5 (MQLMPFGCLL) and T790M-7 (LIMQLMPFGCL), as potential targets for EGFR-TKI-resistant patients. When peripheral blood cells were repeatedly stimulated in vitro with these two peptides and assessed by antigen-specific IFN-γ secretion, T cell lines responsive to T790M-5 and T790M-7 were established in 5 of 6 (83%) and 3 of 6 (50%) healthy donors, respectively. Additionally, the T790M-5- and T790M-7-specific T cell lines displayed an MHC class I-restricted reactivity against NSCLC cell lines expressing both HLA-A2 and the T790M mutation. Interestingly, the NSCLC patients with antigen-specific T cell responses to these epitopes showed a significantly less frequency of EGFR-T790M mutation than those without them [1 of 7 (14%) vs 9 of 15 (60%); chi-squared test, p = 0.0449], indicating the negative correlation between the immune responses to the EGFR-T790M-derived epitopes and the presence of EGFR-T790M mutation in NSCLC patients. This finding could possibly be explained by the hypothesis that immune responses to the mutated neo-antigens derived from T790M might prevent the emergence of tumor cell variants with the T790M resistance mutation in NSCLC patients during EGFR-TKI treatment. Together, our results suggest that the identified T cell epitopes might provide a novel immunotherapeutic approach for prevention and/or treatment of EGFR-TKI resistance with the secondary EGFR T790M resistance mutation in NSCLC patients. 相似文献