首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   410篇
  免费   31篇
  2022年   6篇
  2021年   4篇
  2020年   4篇
  2019年   8篇
  2018年   5篇
  2017年   7篇
  2016年   9篇
  2015年   17篇
  2014年   12篇
  2013年   23篇
  2012年   23篇
  2011年   45篇
  2010年   22篇
  2009年   13篇
  2008年   19篇
  2007年   27篇
  2006年   18篇
  2005年   28篇
  2004年   11篇
  2003年   15篇
  2002年   19篇
  2001年   8篇
  2000年   11篇
  1999年   4篇
  1998年   3篇
  1994年   3篇
  1993年   4篇
  1992年   7篇
  1991年   5篇
  1990年   4篇
  1989年   4篇
  1988年   4篇
  1987年   3篇
  1985年   2篇
  1983年   4篇
  1980年   3篇
  1977年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1972年   5篇
  1970年   1篇
  1969年   6篇
  1968年   2篇
  1967年   2篇
  1966年   2篇
  1965年   2篇
  1963年   1篇
  1942年   1篇
  1940年   1篇
排序方式: 共有441条查询结果,搜索用时 15 毫秒
41.
Recent advancements in magnetic resonance imaging (MRI) have enabled clinical imaging of human cortical bone, providing a potentially powerful new means for assessing bone health with molecular-scale sensitivities unavailable to conventional X-ray-based diagnostics. To this end, (1)H nuclear magnetic resonance (NMR) and high-resolution X-ray signals from human cortical bone samples were correlated with mechanical properties of bone. Results showed that (1)H NMR signals were better predictors of yield stress, peak stress, and pre-yield toughness than were the X-ray derived signals. These (1)H NMR signals can, in principle, be extracted from clinical MRI, thus offering the potential for improved clinical assessment of fracture risk.  相似文献   
42.

Background

Meta-analysis of gene expression microarray datasets presents significant challenges for statistical analysis. We developed and validated a new bioinformatic method for the identification of genes upregulated in subsets of samples of a given tumour type (‘outlier genes’), a hallmark of potential oncogenes.

Methodology

A new statistical method (the gene tissue index, GTI) was developed by modifying and adapting algorithms originally developed for statistical problems in economics. We compared the potential of the GTI to detect outlier genes in meta-datasets with four previously defined statistical methods, COPA, the OS statistic, the t-test and ORT, using simulated data. We demonstrated that the GTI performed equally well to existing methods in a single study simulation. Next, we evaluated the performance of the GTI in the analysis of combined Affymetrix gene expression data from several published studies covering 392 normal samples of tissue from the central nervous system, 74 astrocytomas, and 353 glioblastomas. According to the results, the GTI was better able than most of the previous methods to identify known oncogenic outlier genes. In addition, the GTI identified 29 novel outlier genes in glioblastomas, including TYMS and CDKN2A. The over-expression of these genes was validated in vivo by immunohistochemical staining data from clinical glioblastoma samples. Immunohistochemical data were available for 65% (19 of 29) of these genes, and 17 of these 19 genes (90%) showed a typical outlier staining pattern. Furthermore, raltitrexed, a specific inhibitor of TYMS used in the therapy of tumour types other than glioblastoma, also effectively blocked cell proliferation in glioblastoma cell lines, thus highlighting this outlier gene candidate as a potential therapeutic target.

Conclusions/Significance

Taken together, these results support the GTI as a novel approach to identify potential oncogene outliers and drug targets. The algorithm is implemented in an R package (Text S1).  相似文献   
43.
After severe myocardial infarction (MI), heart failure results from ischemia, fibrosis, and remodeling. A promising therapy to enhance cardiac function and induce therapeutic angiogenesis via a paracrine mechanism in MI is myoblast sheet transplantation. We hypothesized that in a rat model of MI-induced chronic heart failure, this therapy could be further improved by overexpression of the antiapoptotic, antifibrotic, and proangiogenic hepatocyte growth factor (HGF) in the myoblast sheets. We studied the ability of wild type (L6-WT) and human HGF-expressing (L6-HGF) L6 myoblast sheet-derived paracrine factors to stimulate cardiomyocyte, endothelial cell, or smooth muscle cell migration in culture. Further, we studied the autocrine effect of hHGF-expression on myoblast gene expression profiles by use of microarray analysis. We induced MI in Wistar rats by left anterior descending coronary artery (LAD) ligation and allowed heart failure to develop for 4 weeks. Thereafter, we administered L6-WT (n = 15) or L6-HGF (n = 16) myoblast sheet therapy. Control rats (n = 13) underwent LAD ligation and rethoracotomy without therapy, and five rats underwent a sham operation in both surgeries. We evaluated cardiac function with echocardiography at 2 and 4 weeks after therapy, and analyzed cardiac angiogenesis and left ventricular architecture from histological sections at 4 weeks. Paracrine mediators from L6-HGF myoblast sheets effectively induced migration of cardiac endothelial and smooth muscle cells but not cardiomyocytes. Microarray data revealed that hHGF-expression modulated myoblast gene expression. In vivo, L6-HGF sheet therapy effectively stimulated angiogenesis in the infarcted and non-infarcted areas. Both L6-WT and L6-HGF therapies enhanced cardiac function and inhibited remodeling in a similar fashion. In conclusion, L6-HGF therapy effectively induced angiogenesis in the chronically failing heart. Cardiac function, however, was not further enhanced by hHGF expression.  相似文献   
44.
Understanding the interaction between the nervous system and cerebral vasculature is fundamental to forming a complete picture of the neurophysiology of sleep and its role in maintaining physiological homeostasis. However, the intrinsic hemodynamics of slow-wave sleep (SWS) are still poorly known. We carried out 30 all-night sleep measurements with combined near-infrared spectroscopy (NIRS) and polysomnography to investigate spontaneous hemodynamic behavior in SWS compared to light (LS) and rapid-eye-movement sleep (REM). In particular, we concentrated on slow oscillations (3-150 mHz) in oxy- and deoxyhemoglobin concentrations, heart rate, arterial oxygen saturation, and the pulsation amplitude of the photoplethysmographic signal. We also analyzed the behavior of these variables during sleep stage transitions. The results indicate that slow spontaneous cortical and systemic hemodynamic activity is reduced in SWS compared to LS, REM, and wakefulness. This behavior may be explained by neuronal synchronization observed in electrophysiological studies of SWS and a reduction in autonomic nervous system activity. Also, sleep stage transitions are asymmetric, so that the SWS-to-LS and LS-to-REM transitions, which are associated with an increase in the complexity of cortical electrophysiological activity, are characterized by more dramatic hemodynamic changes than the opposite transitions. Thus, it appears that while the onset of SWS and termination of REM occur only as gradual processes over time, the termination of SWS and onset of REM may be triggered more abruptly by a particular physiological event or condition. The results suggest that scalp hemodynamic changes should be considered alongside cortical hemodynamic changes in NIRS sleep studies to assess the interaction between the autonomic and central nervous systems.  相似文献   
45.
Breast cancer often metastasizes to bone causing osteolytic bone resorption which releases active TGFβ. Because TGFβ favors progression of breast cancer metastasis to bone, we hypothesized that treatment using anti-TGFβ antibody may reduce tumor burden and rescue tumor-associated bone loss in metastatic breast cancer. In this study we have tested the efficacy of an anti-TGFβ antibody 1D11 preventing breast cancer bone metastasis. We have used two preclinical breast cancer bone metastasis models, in which either human breast cancer cells or murine mammary tumor cells were injected in host mice via left cardiac ventricle. Using several in vivo, in vitro and ex vivo assays, we have demonstrated that anti-TGFβ antibody treatment have significantly reduced tumor burden in the bone along with a statistically significant threefold reduction in osteolytic lesion number and tenfold reduction in osteolytic lesion area. A decrease in osteoclast numbers (p?=?0.027) in vivo and osteoclastogenesis ex vivo were also observed. Most importantly, in tumor-bearing mice, anti-TGFβ treatment resulted in a twofold increase in bone volume (p<0.01). In addition, treatment with anti-TGFβ antibody increased the mineral-to-collagen ratio in vivo, a reflection of improved tissue level properties. Moreover, anti-TGFβ antibody directly increased mineralized matrix formation in calverial osteoblast (p?=?0.005), suggesting a direct beneficial role of anti-TGFβ antibody treatment on osteoblasts. Data presented here demonstrate that anti-TGFβ treatment may offer a novel therapeutic option for tumor-induced bone disease and has the dual potential for simultaneously decreasing tumor burden and rescue bone loss in breast cancer to bone metastases. This approach of intervention has the potential to reduce skeletal related events (SREs) in breast cancer survivors.  相似文献   
46.
Breast cancer often metastasizes to bone causing osteolytic bone resorption which releases active TGFβ. Because TGFβ favors progression of breast cancer metastasis to bone, we hypothesized that treatment using anti-TGFβ antibody may reduce tumor burden and rescue tumor-associated bone loss in metastatic breast cancer. In this study we have tested the efficacy of an anti-TGFβ antibody 1D11 preventing breast cancer bone metastasis. We have used two preclinical breast cancer bone metastasis models, in which either human breast cancer cells or murine mammary tumor cells were injected in host mice via left cardiac ventricle. Using several in vivo, in vitro and ex vivo assays, we have demonstrated that anti-TGFβ antibody treatment have significantly reduced tumor burden in the bone along with a statistically significant threefold reduction in osteolytic lesion number and tenfold reduction in osteolytic lesion area. A decrease in osteoclast numbers (p = 0.027) in vivo and osteoclastogenesis ex vivo were also observed. Most importantly, in tumor-bearing mice, anti-TGFβ treatment resulted in a twofold increase in bone volume (p<0.01). In addition, treatment with anti-TGFβ antibody increased the mineral-to-collagen ratio in vivo, a reflection of improved tissue level properties. Moreover, anti-TGFβ antibody directly increased mineralized matrix formation in calverial osteoblast (p = 0.005), suggesting a direct beneficial role of anti-TGFβ antibody treatment on osteoblasts. Data presented here demonstrate that anti-TGFβ treatment may offer a novel therapeutic option for tumor-induced bone disease and has the dual potential for simultaneously decreasing tumor burden and rescue bone loss in breast cancer to bone metastases. This approach of intervention has the potential to reduce skeletal related events (SREs) in breast cancer survivors.  相似文献   
47.
1. Neurotrophins and serotonin have both been implicated in the pathophysiology of depression and in the mechanisms of antidepressant treatments. 2. Brain-derived neurotrophic factor (BDNF) influences the growth and plasticity of serotonergic (5-HT) neurons via the activation of trkB receptor. 3. Transgenic mice overexpressing the full-length trkB receptor (TrkB.TK+) and showing increased trkB activity in brain, and their wild type (WT) littermates, were injected with the antidepressant fluoxetine or saline, and analyzed behaviorally in the forced swimming test paradigm and biochemically for the concentrations of brain monoamines and their metabolites. 4. The TrkB.TK+ mice displayed increased latency to immobility in the forced swim test, suggesting resistance to behavioral despair. 5. Fluoxetine increased the latency to immobility in wild-type mice to a similar level as seen in the trkB.TK+ mice after saline treatment, but had no further behavioral effect in the swimming behavior of the trkB.TK+ mice. 6. Only minor differences in the levels of brain monoamines and their metabolites were observed between the transgenic and wild-type mice. 7. These data, together with other recent observations, suggest that trkB activation may play a critical role in the behavioral responses to antidepressant drugs in mice.  相似文献   
48.
Nicotine, a component of cigarette smoke, has been implicated in the pathogenesis of cardiovascular disease. We examined whether nicotine regulates angiotensin-converting enzyme (ACE), an enzyme that plays an important role in the pathophysiology of atherosclerosis and hypertension. Human umbilical cord vein endothelial cells were treated with nicotine (0.1-1 microM) alone or in combination with vascular endothelial growth factor (VEGF; 0.5 nM) or GF-109203X (GFX; 2.5 microM). The amount of ACE in intact endothelial cells was measured by an inhibitor-binding assay method, and ACE mRNA levels were quantified using LightCycler technology. Phosphorylated PKC levels were measured by Western immunoblotting. Nicotine did not modulate basal ACE production but significantly potentiated VEGF-induced ACE upregulation. Treatment of endothelial cells with the PKC inhibitor GFX totally blocked VEGF- and nicotine-induced ACE upregulation. VEGF induced PKC phosphorylation, which was potentiated by cotreatment with nicotine. We conclude that nicotine significantly potentiated VEGF-induced ACE upregulation. This effect was probably mediated by PKC phosphorylation. The interaction of nicotine with VEGF in ACE induction may contribute to the pathogenesis of smoking-related cardiovascular disease.  相似文献   
49.
Antagonist binding to alpha-2 adrenoceptors (alpha2-ARs) is not well understood. Structural models were constructed for the three human alpha2-AR subtypes based on the bovine rhodopsin X-ray structure. Twelve antagonist ligands (including covalently binding phenoxybenzamine) were automatically docked to the models. A hallmark of agonist binding is the electrostatic interaction between a positive charge on the agonist and the negatively charged side chain of D3.32. For antagonist binding, ion-pair formation would require deviations of the models from the rhodopsin structural template, e.g., a rotation of TM3 to relocate D3.32 more centrally within the binding cavity, and/or creation of new space near TM2/TM7 such that antagonists would be shifted away from TM5. Thus, except for the quinazolines, antagonist ligands automatically docked to the model structures did not form ion-pairs with D3.32. This binding mode represents a valid alternative, whereby the positive charge on the antagonists is stabilized by cation-pi interactions with aromatic residues (e.g., F6.51) and antagonists interact with D3.32 via carboxylate-aromatic interactions. This binding mode is in good agreement with maps derived from a molecular interaction library that predicts favorable atomic contacts; similar interaction environments are seen for unrelated proteins in complex with ligands sharing similarities with the alpha2-AR antagonists.  相似文献   
50.
As genome-scale measurements lead to increasingly complex models of gene regulation, systematic approaches are needed to validate and refine these models. Towards this goal, we describe an automated procedure for prioritizing genetic perturbations in order to discriminate optimally between alternative models of a gene-regulatory network. Using this procedure, we evaluate 38 candidate regulatory networks in yeast and perform four high-priority gene knockout experiments. The refined networks support previously unknown regulatory mechanisms downstream of SOK2 and SWI4.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号