首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   840篇
  免费   46篇
  2023年   5篇
  2022年   13篇
  2021年   23篇
  2020年   20篇
  2019年   21篇
  2018年   21篇
  2017年   20篇
  2016年   33篇
  2015年   39篇
  2014年   47篇
  2013年   60篇
  2012年   74篇
  2011年   67篇
  2010年   41篇
  2009年   44篇
  2008年   44篇
  2007年   52篇
  2006年   34篇
  2005年   23篇
  2004年   31篇
  2003年   28篇
  2002年   23篇
  2001年   13篇
  2000年   14篇
  1999年   10篇
  1998年   7篇
  1997年   3篇
  1996年   4篇
  1995年   3篇
  1994年   5篇
  1992年   5篇
  1991年   3篇
  1990年   3篇
  1989年   6篇
  1988年   2篇
  1987年   4篇
  1986年   2篇
  1985年   4篇
  1984年   4篇
  1983年   3篇
  1980年   3篇
  1976年   2篇
  1975年   5篇
  1964年   2篇
  1961年   1篇
  1954年   1篇
  1942年   1篇
  1940年   2篇
  1938年   1篇
  1933年   1篇
排序方式: 共有886条查询结果,搜索用时 15 毫秒
91.
The chromogranin A (CHGA)-derived peptide catestatin (CST: hCHGA(352-372)) is a noncompetitive catecholamine-release inhibitor that exerts vasodilator, antihypertensive, and cardiosuppressive actions. We have shown that CST directly influences the basal performance of the vertebrate heart where CST dose dependently induced a nitric oxide-cGMP-dependent cardiosuppression and counteracted the effects of adrenergic stimulation through a noncompetitive antagonism. Here, we sought to determine the specific intracardiac signaling activated by CST in the rat heart. Physiological analyses performed on isolated, Langendorff-perfused cardiac preparations revealed that CST-induced negative inotropism and lusitropism involve β(2)/β(3)-adrenergic receptors (β(2)/β(3)-AR), showing a higher affinity for β(2)-AR. Interaction with β(2)-AR activated phosphatidylinositol 3-kinase/endothelial nitric oxide synthase (eNOS), increased cGMP levels, and induced activation of phosphodiesterases type 2 (PDE2), which was found to be involved in the antiadrenergic action of CST as evidenced by the decreased cAMP levels. CST-dependent negative cardiomodulation was abolished by functional denudation of the endothelium with Triton. CST also increased the eNOS expression in cardiac tissue and human umbilical vein endothelial cells. cells, confirming the involvement of the vascular endothelium. In ventricular extracts, CST increased S-nitrosylation of both phospholamban and β-arrestin, suggesting an additional mechanism for intracellular calcium modulation and β-adrenergic responsiveness. We conclude that PDE2 and S-nitrosylation play crucial roles in the CST regulation of cardiac function. Our results are of importance in relation to the putative application of CST as a cardioprotective agent against stress, including excessive sympathochromaffin overactivation.  相似文献   
92.
Proline-rich tyrosine kinase 2 (Pyk2) is a member of the focal adhesion kinase family and is highly expressed in brain and hematopoietic cells. Pyk2 plays diverse functions in cells, including the regulation of cell adhesion, migration, and cytoskeletal reorganization. In the brain, it is involved in the induction of long term potentiation through regulation of N-methyl-d-aspartate receptor trafficking. This occurs through the phosphorylation and activation of Src family tyrosine kinase members, such as Fyn, that phosphorylate GluN2B at Tyr(1472). Phosphorylation at this site leads to exocytosis of GluN1-GluN2B receptors to synaptic membranes. Pyk2 activity is modulated by phosphorylation at several critical tyrosine sites, including Tyr(402). In this study, we report that Pyk2 is a substrate of striatal-enriched protein-tyrosine phosphatase (STEP). STEP binds to and dephosphorylates Pyk2 at Tyr(402). STEP KO mice showed enhanced phosphorylation of Pyk2 at Tyr(402) and of the Pyk2 substrates paxillin and ASAP1. Functional studies indicated that STEP opposes Pyk2 activation after KCl depolarization of cortical slices and blocks Pyk2 translocation to postsynaptic densities, a key step required for Pyk2 activation and function. This is the first study to identify Pyk2 as a substrate for STEP.  相似文献   
93.
Root extract of liquorice is traditionally used to treat several diseases. Liquorice-derived constituents present several biological actions. In particular, glycyrrhizin and its aglycone, glycyrrhetinic acid, exhibit well-known cardiovascular properties. The aim of this research was to explore the direct cardiac activity of glycyrrhizin and glycyrrhetinic acid.The effects of synthetic glycyrrhizin and glycyrrhetinic acid were evaluated on the isolated and Langendorff perfused rat heart. The intracellular signaling involved in the effects of the two substances was analyzed on isolated and perfused heart and by Western blotting on cardiac extracts. Under basal conditions, both glycyrrhizin and glycyrrhetinic acid influenced cardiac contractility and relaxation. Glycyrrhizin induced significant positive inotropic and lusitropic effects starting from very low concentrations, while both inotropism and lusitropism were negatively affected by glycyrrhetinic acid. Both substances significantly increased heart rate. Analysis of the signal transduction mechanisms suggested that glycyrrhizin acts through the endothelin receptor type A/phospholipase C axis while glycyrrhetinic acid acts through endothelin receptor type B/Akt/nitric oxide synthase/nitric oxide axis.To our knowledge, these data reveal, for the first time, that both glycyrrhizin and glycyrrhetinic acid directly affect cardiac performance. Additional information on the physiological significance of these substances and their cardiac molecular targets may provide indication on their biomedical application.  相似文献   
94.
Glucosinolates (GLSs) are sulfur-rich plant secondary metabolites which occur in a variety of cruciferous vegetables and among various classes of them, genus Brassica exhibits a rich family of these phytochemicals at high, medium and low abundances. Liquid chromatography (LC) with electrospray ionization in negative ion mode (ESI-) coupled to a hybrid quadrupole linear ion trap (LTQ) and Fourier transform ion cyclotron resonance mass spectrometer (FTICRMS) was employed for the selective and sensitive determination of intact GLSs in crude sample extracts of broccoli (Brassica oleracea L. Var. italica), cauliflower (B. oleracea L. Var. Botrytis) and rocket salad (Eruca sativa L.) with a wide range of contents. When LTQ and FTICR mass analyzers are compared, the magnitude of the limit of detection was ca. 5/6-fold lower with the FTICR MS. In addition, the separation and detection by LC-ESI-FTICR MS provides a highly selective assay platform for unambiguous identification of GLSs, which can be extended to lower abundance (minor) GLSs without significant interferences of other compounds in the sample extracts. The analysis of Brassicaceae species emphasized the presence of eight minor GLSs, viz. 1-methylpropyl-GLS, 2-methylpropyl-GLS, 2-methylbutyl-GLS, 3-methylbutyl-GLS, n-pentyl-GLS, 3-methylpentyl-GLS, 4-methylpentyl-GLS and n-hexyl-GLS. The occurrence of these GLSs belonging to the saturated aliphatic side chain families C(4), C(5) and C(6), presumably formed by chain elongation of leucine, homoleucine and dihomoleucine as primary amino acid precursors, is described. Based on their retention behavior and tandem MS spectra, all these minor compounds occurring in plant extracts of B. oleracea L. Var. italica, B. oleracea L. Var. Botrytis and E. sativa L. were tentatively identified.  相似文献   
95.
96.

Background and Aim

Altered expression of microRNAs (miRNAs) hallmarks many cancer types. The study of the associations of miRNA expression profile and cancer phenotype could help identify the links between deregulation of miRNA expression and oncogenic pathways.

Methods

Expression profiling of 866 human miRNAs in 19 colorectal and 17 pancreatic cancers and in matched adjacent normal tissues was investigated. Classical paired t-test and random forest analyses were applied to identify miRNAs associated with tissue-specific tumors. Network analysis based on a computational approach to mine associations between cancer types and miRNAs was performed.

Results

The merge between the two statistical methods used to intersect the miRNAs differentially expressed in colon and pancreatic cancers allowed the identification of cancer-specific miRNA alterations. By miRNA-network analysis, tissue-specific patterns of miRNA deregulation were traced: the driving miRNAs were miR-195, miR-1280, miR-140-3p and miR-1246 in colorectal tumors, and miR-103, miR-23a and miR-15b in pancreatic cancers.

Conclusion

MiRNA expression profiles may identify cancer-specific signatures and potentially useful biomarkers for the diagnosis of tissue specific cancers. miRNA-network analysis help identify altered miRNA regulatory networks that could play a role in tumor pathogenesis.  相似文献   
97.
We investigated whether residual material from diagnostic smears of fine needle aspirations (FNAs) of mammographically detected breast lesions can be successfully used to extract RNA for reliable gene expression analysis. Twenty-eight patients underwent FNA of breast lesions under ultrasonographic guidance. After smearing slides for cytology, residual cells were rinsed with TRIzol to recover RNA. RNA yield ranged from 0.78 to 88.40 μg per sample. FNA leftovers from 23 nonpalpable breast cancers were selected for gene expression profiling using oligonucleotide microarrays. Clusters generated by global expression profiles partitioned samples in well-distinguished subgroups that overlapped with clusters obtained using "biologic scores" (cytohistologic variables) and differed from clusters based on "technical scores" (RNA/complementary RNA/microarray quality). Microarray profiling used to measure the grade of differentiation and estrogen receptor and ERBB2/HER2 status reflected the results obtained by histology and immunohistochemistry. Given that proliferative status in the FNA material is not always assessable, we designed and performed on FNA leftover a multiprobe genomic signature for proliferation genes that strongly correlated with the Ki67 index examined on histologic material. These findings show that cells residual to cytologic smears of FNA are suitable for obtaining high-quality RNA for high-throughput analysis even when taken from small nonpalpable breast lesions.  相似文献   
98.
The perennial herbaceous crop Arundo donax is a potential feedstock for second-generation bioethanol production. In the present work, two different process options were investigated for the conversion of two differently steam-pretreated batches of A. donax. The pretreated raw material was converted to ethanol with a xylose-consuming Saccharomyces cerevisiae strain, VTT C-10880, by applying either separate hydrolysis and fermentation (SHF) or simultaneous saccharification and fermentation (SSF). The highest overall ethanol yield and final ethanol concentration were achieved using SHF (0.27 g g?1 and 20.6 g L?1 compared to 0.24 g g?1 and 19.0 g L?1 when SSF was used). The performance of both SHF and SSF was improved by complementing the cellulolytic enzymes with hemicellulases. The higher amount of acetic acid in one of the batches was shown to strongly affect xylose consumption in the fermentation. Only half of the xylose was consumed when batch 1 (high acetic acid) was fermented, compared to that 94% of the xylose was consumed in fermentation of batch 2 (lower acetic acid). Furthermore, the high amount of xylooligomers present in the pretreated materials considerably inhibited the enzymatic hydrolysis. Both the formation of xylooligomers and acetic acid thus need to be considered in the pretreatment process in order to achieve efficient conversion of A. donax to ethanol.  相似文献   
99.
Sperm‐mediated gene transfer (SMGT), the ability of sperm cells to spontaneously incorporate exogenous DNA and to deliver it to oocytes during fertilization, has been proposed as an easy and efficient method for producing transgenic animals. SMGT is still undergoing development and optimization to improve the uptake efficiency of foreign DNA by sperm cells, which is a preliminary, yet critical, step for successful SMGT. Towards this aim, we developed a quantitative, real‐time PCR‐based assay to assess the absolute number of exogenous plasmids internalized into the spermatozoon. Using this technique, we found that the circular form of the DNA is more efficiently taken up than the linearized form. We also found that DNA internalization into the nucleus of porcine sperm cells is better under specific methyl‐β‐cyclodextrin (MCD)‐treated conditions, where the plasma membrane properties were altered without significantly compromising sperm physiology. These results provide the first evidence that membrane cholesterol depletion by MCD might represent a novel strategy for enhancing the ability of sperm to take up heterologous DNA. Mol. Reprod. Dev. 79: 853–860, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号