首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   773篇
  免费   48篇
  2023年   4篇
  2022年   11篇
  2021年   22篇
  2020年   21篇
  2019年   20篇
  2018年   18篇
  2017年   22篇
  2016年   31篇
  2015年   40篇
  2014年   46篇
  2013年   59篇
  2012年   73篇
  2011年   60篇
  2010年   40篇
  2009年   45篇
  2008年   39篇
  2007年   46篇
  2006年   27篇
  2005年   24篇
  2004年   31篇
  2003年   21篇
  2002年   20篇
  2001年   4篇
  2000年   5篇
  1999年   5篇
  1998年   6篇
  1996年   3篇
  1995年   3篇
  1994年   3篇
  1992年   4篇
  1991年   2篇
  1989年   3篇
  1988年   3篇
  1987年   3篇
  1986年   5篇
  1985年   6篇
  1984年   4篇
  1983年   2篇
  1980年   2篇
  1978年   3篇
  1976年   4篇
  1975年   10篇
  1974年   3篇
  1973年   3篇
  1972年   2篇
  1970年   2篇
  1942年   1篇
  1940年   2篇
  1938年   1篇
  1933年   1篇
排序方式: 共有821条查询结果,搜索用时 15 毫秒
181.
Gangliosides and the urokinase plasminogen activator receptor (uPAR) tipically partition in specialized membrane microdomains called lipid‐rafts. uPAR becomes functionally important in fostering angiogenesis in endothelial progenitor cells (EPCs) upon recruitment in caveolar‐lipid rafts. Moreover, cell membrane enrichment with exogenous GM1 ganglioside is pro‐angiogenic and opposite to the activity of GM3 ganglioside. On these basis, we first checked the interaction of uPAR with membrane models enriched with GM1 or GM3, relying on the adoption of solid‐supported mobile bilayer lipid membranes with raft‐like composition formed onto solid hydrophilic surfaces, and evaluated by surface plasmon resonance (SPR) the extent of uPAR recruitment. We estimated the apparent dissociation constants of uPAR‐GM1/GM3 complexes. These preliminary observations, indicating that uPAR binds preferentially to GM1‐enriched biomimetic membranes, were validated by identifying a pro‐angiogenic activity of GM1‐enriched EPCs, based on GM1‐dependent uPAR recruitment in caveolar rafts. We have observed that addition of GM1 to EPCs culture medium promotes matrigel invasion and capillary morphogenesis, as opposed to the anti‐angiogenesis activity of GM3. Moreover, GM1 also stimulates MAPKinases signalling pathways, typically associated with an angiogenesis program. Caveolar‐raft isolation and Western blotting of uPAR showed that GM1 promotes caveolar‐raft partitioning of uPAR, as opposed to control and GM3‐challenged EPCs. By confocal microscopy, we have shown that in EPCs uPAR is present on the surface in at least three compartments, respectively, associated to GM1, GM3 and caveolar rafts. Following GM1 exogenous addition, the GM3 compartment is depleted of uPAR which is recruited within caveolar rafts thereby triggering angiogenesis.  相似文献   
182.
183.
184.
APP is a type I membrane protein of unknown function, whose proteolytic processing, driven by beta- and gamma-secretases, generates the beta-amyloid peptides, one of the hallmarks of the pathogenesis of Alzheimer's disease. The short cytosolic domain of APP is the center of a complex network of protein-protein interactions. This network appears to play a crucial role in the regulation of the APP processing and in turn in the generation of the amyloid peptides, thus suggesting candidate targets for new therapeutic approaches. Furthermore, some possible functions of APP could just emerge from the study of this cytodomain and its partners.  相似文献   
185.
186.
Neuromodulation is a fundamental process in the brain that regulates synaptic transmission, neuronal network activity and behavior. Emerging evidence demonstrates that astrocytes, a major population of glial cells in the brain, play previously unrecognized functions in neuronal modulation. Astrocytes can detect the level of neuronal activity and release chemical transmitters to influence neuronal function. For example, recent findings show that astrocytes play crucial roles in the control of Hebbian plasticity, the regulation of neuronal excitability and the induction of homeostatic plasticity. This review discusses the importance of astrocyte-to-neuron signaling in different aspects of neuronal function from the activity of single synapses to that of neuronal networks.  相似文献   
187.
188.
Glycine oxidase from Bacillus subtilis is a homotetrameric flavoprotein of great potential biotechnological use because it catalyzes the oxidative deamination of various amines and d-isomer of amino acids to yield the corresponding α-keto acids, ammonia/amine, and hydrogen peroxide. Glyphosate (N-phosphonomethylglycine), a broad spectrum herbicide, is an interesting synthetic amino acid: this compound inhibits 5-enolpyruvylshikimate-3-phosphate synthase in the shikimate pathway, which is essential for the biosynthesis of aromatic amino acids in plants and certain bacteria. In recent years, transgenic crops resistant to glyphosate were mainly generated by overproducing the plant enzyme or by introducing a 5-enolpyruvylshikimate-3-phosphate synthase insensitive to this herbicide. In this work, we propose that the enzymatic oxidation of glyphosate could be an effective alternative to this important biotechnological process. To reach this goal, we used a rational design approach (together with site saturation mutagenesis) to generate a glycine oxidase variant more active on glyphosate than on the physiological substrate glycine. The glycine oxidase containing three point mutations (G51S/A54R/H244A) reaches an up to a 210-fold increase in catalytic efficiency and a 15,000-fold increase in the specificity constant (the kcat/Km ratio between glyphosate and glycine) as compared with wild-type glycine oxidase. The inspection of its three-dimensional structure shows that the α2-α3 loop (comprising residues 50–60 and containing two of the mutated residues) assumes a novel conformation and that the newly introduced residue Arg54 could be the key residue in stabilizing glyphosate binding and destabilizing glycine positioning in the binding site, thus increasing efficiency on the herbicide.  相似文献   
189.
Poplar is an important crop and a model system to understand molecular processes of growth, development and responses to environmental stimuli in trees. In this study, we analyzed gene expression in white poplar (Populus alba) plants subjected to chilling. Two forward suppression-subtractive-hybridization libraries were constructed from P. alba plants exposed to low non-freezing temperature for 6 or 48 h. Hundred and sixty-two cDNAs, 54 from the 6-h library and 108 from the 48-h library, were obtained. Isolated genes belonged to six categories of genes, specifically those that: (i) encode stress and defense proteins; (ii) are involved in signal transduction; (iii) are related to regulation of gene expression; (iv) encode proteins involved in cell cycle and DNA processing; (v) encode proteins involved in metabolism and energetic processes; and (vi) are involved in protein fate.Different expression patterns at 3, 6, 12, 24, 48 h at 4 °C and after a recovery of 24 h at 20 °C were observed for isolated genes, as expected according to the class in which the gene putatively belongs. Forty-four of 162 genes contained DRE/LTRE cis-elements in the 5′ proximal promoter of their orthologs in Populus trichocarpa, suggesting that they putatively belong to the CBF regulon. The results contribute new data to the list of possible candidate genes involved in cold response in poplar.  相似文献   
190.
The vegetation and fire history of few coastal sites has been investigated in the Mediterranean region so far. We present the first paleoecological reconstruction from coastal Sicily, the largest island in the Mediterranean Sea. We analysed pollen and charcoal in the sediments of Biviere di Gela, a lake (lagoon) on the south coast of Sicily. Our data suggest that the area became afforested after a marine transgression at ca. 7200 cal b.p. (5250 b.c.). Build-up of forest and shrublands took ca. 200–300 years, mainly with the deciduous trees Quercus, Ostrya and Fraxinus. Juniperus expanded ca. 6900 cal b.p. (4950 b.c.), but declined again 6600 cal b.p. (4650 b.c.). Afterwards, evergreen trees (Q. ilex-type and Olea) became dominant in the forest and Pistacia shrublands were established. Forest and shrubland reached a maximum ca. 7000–5000 cal b.p. (5050–3050 b.c.); subsequently forest declined in response to human impact, which was probably exacerbated by a general trend towards a more arid climate. During the Neolithic, fire was used to open the landscape, significantly reducing several arboreal taxa (Q. ilex, Fraxinus, Juniperus) and promoting herbs and shrubs (Achillea, Cichorioideae, Brassicaceae, Ephedra). Final forest disruption occurred around 2600 cal b.p. (650 b.c.) with the onset of the historically documented Greek colonization. We conclude that the open maquis and garrigue vegetation of today is primarily the consequence of intensive land-use over millennia. Under natural or near-natural conditions arboreal taxa such as Q. ilex, Olea and Pistacia would be far more important than they are today, even under the hot and rather dry coastal conditions of southern Sicily.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号