首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   1篇
  56篇
  2015年   4篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   3篇
  2008年   1篇
  2007年   2篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   3篇
  2000年   3篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1976年   4篇
  1975年   2篇
  1973年   2篇
  1972年   2篇
排序方式: 共有56条查询结果,搜索用时 8 毫秒
31.

Background

Many fish species experience long periods of fasting in nature often associated with seasonal reductions in water temperature and prey availability or spawning migrations. During periods of nutrient restriction, changes in metabolism occur to provide cellular energy via catabolic processes. Muscle is particularly affected by prolonged fasting as myofibrillar proteins act as a major energy source. To investigate the mechanisms of metabolic reorganisation with fasting and refeeding in a saltwater stage of Atlantic salmon (Salmo salar L.) we analysed the expression of genes involved in myogenesis, growth signalling, lipid biosynthesis and myofibrillar protein degradation and synthesis pathways using qPCR.

Results

Hierarchical clustering of gene expression data revealed three clusters. The first cluster comprised genes involved in lipid metabolism and triacylglycerol synthesis (ALDOB, DGAT1 and LPL) which had peak expression 3-14d after refeeding. The second cluster comprised ADIPOQ, MLC2, IGF-I and TALDO1, with peak expression 14-32d after refeeding. Cluster III contained genes strongly down regulated as an initial response to feeding and included the ubiquitin ligases MuRF1 and MAFbx, myogenic regulatory factors and some metabolic genes.

Conclusion

Early responses to refeeding in fasted salmon included the synthesis of triacylglycerols and activation of the adipogenic differentiation program. Inhibition of MuRF1 and MAFbx respectively may result in decreased degradation and concomitant increased production of myofibrillar proteins. Both of these processes preceded any increase in expression of myogenic regulatory factors and IGF-I. These responses could be a necessary strategy for an animal adapted to long periods of food deprivation whereby energy reserves are replenished prior to the resumption of myogenesis.  相似文献   
32.
Signaling through receptor activator of nuclear factor-kappaB (RANK) is essential for the differentiation and activation of osteoclasts, the cell principally responsible for bone resorption. Animals genetically deficient in RANK or the cognate RANK ligand are profoundly osteopetrotic because of the lack of bone resorption and remodeling. RANK provokes biochemical signaling via the recruitment of intracellular tumor necrosis factor receptor-associated factors (TRAFs) after ligand binding and receptor oligomerization. To understand the RANK-mediated signal transduction mechanism in osteoclastogenesis, we have designed a system to recapitulate osteoclast differentiation and activation in vitro by transfer of the RANK cDNA into hematopoietic precursors genetically deficient in RANK. Gene transfer of RANK constructs that are selectively incapable of binding different TRAF proteins revealed that TRAF pathways downstream of RANK that affect osteoclast differentiation are functionally redundant. In contrast, the interaction of RANK with TRAF6 is absolutely required for the proper formation of cytoskeletal structures and functional resorptive activity of osteoclasts. Moreover, signaling via the interleukin-1 receptor, which also utilizes TRAF6, rescues the osteoclast activation defects observed in the absence of RANK/TRAF6 interactions. These studies are the first to define the functional domains of the RANK cytoplasmic tail that control specific differentiation and activation pathways in osteoclasts.  相似文献   
33.
The frequency of micronuclei (also known as Howell-Jolly bodies) in peripheral blood erythrocytes of humans is extremely low due to the efficiency with which the spleen sequesters and destroys these aberrant cells. In the past, this has precluded erythrocyte-based analyses from effectively measuring chromosome damage. In this report, we describe a high-throughput, single-laser flow cytometric system for scoring the incidence of micronucleated reticulocytes (MN-RET) in human blood. Differential staining of these cells was accomplished by combining the immunochemical reagent anti-CD71-FITC with a nucleic acid dye (propidium iodide plus RNase). The immunochemical reagent anti-CD42b-PE was also incorporated into the procedure in order to exclude platelets which can interfere with analysis. This analytical system was evaluated with blood samples from ten healthy volunteers, one splenectomized subject, as well as samples collected from nine cancer patients before and over the course of radio- or chemotherapy. The mean frequency of MN-RET observed for the healthy subjects was 0.09%. This value is nearly two orders of magnitude higher than frequencies observed in mature erythrocytes, and is approximately half the MN-RET frequency observed for the splenectomized subject (0.20%). This suggests that the spleen's effect on micronucleated cell incidence can be minimized by restricting analyses to the youngest (CD71-positive) fraction of reticulocytes. Furthermore, MN-RET frequencies were significantly elevated in patients undergoing cancer therapy. Collectively, these data establish that micronuclei can be quantified in human peripheral blood reticulocytes with a single-laser flow cytometer, and that these measurements reflect the level of chromosome damage which has occurred in red marrow space.  相似文献   
34.

Background  

The secretin family is a pleotropic group of brain-gut peptides with affinity for class 2 G-protein coupled receptors (secretin family GPCRs) proposed to have emerged early in the metazoan radiation via gene or genome duplications. In human, 10 members exist and sequence and functional homologues and ligand-receptor pairs have been characterised in representatives of most vertebrate classes. Secretin-like family GPCR homologues have also been isolated in non-vertebrate genomes however their corresponding ligands have not been convincingly identified and their evolution remains enigmatic.  相似文献   
35.

Background  

Citrus canker is a disease caused by the phytopathogens Xanthomonas citri subsp. citri, Xanthomonas fuscans subsp. aurantifolli and Xanthomonas alfalfae subsp. citrumelonis. The first of the three species, which causes citrus bacterial canker type A, is the most widely spread and severe, attacking all citrus species. In Brazil, this species is the most important, being found in practically all areas where citrus canker has been detected. Like most phytobacterioses, there is no efficient way to control citrus canker. Considering the importance of the disease worldwide, investigation is needed to accurately detect which genes are related to the pathogen-host adaptation process and which are associated with pathogenesis.  相似文献   
36.
37.

Background:  

Duplicated genes are common in vertebrate genomes. Their persistence is assumed to be either a consequence of gain of novel function (neofunctionalisation) or partitioning of the function of the ancestral molecule (sub-functionalisation). Surprisingly few studies have evaluated the extent of such modifications despite the numerous duplicated receptor and ligand genes identified in vertebrate genomes to date. In order to study the importance of function in the maintenance of duplicated genes, sea bream (Sparus auratus) PAC1 receptors, sequence homologues of the mammalian receptor specific for PACAP (Pituitary Adenylate Cyclase-Activating Polypeptide), were studied. These receptors belong to family 2 GPCRs and most of their members are duplicated in teleosts although the reason why both persist in the genome is unknown.  相似文献   
38.
39.
This laboratory has previously reported a flow cytometric procedure for quantitatively analyzing mouse peripheral blood reticulocytes for micronucleus content. The current study extends this line of investigation by evaluating whether these same flow cytometric scoring procedures can be applied to the analysis of mouse bone marrow samples. To validate the method, three groups of male BALB/c mice were treated with 100 mg/kg b.wt. methyl methanesulfonate. Bone marrow samples were collected 20, 40 or 60 h after administration. A set of 5 untreated animals was included to provide an indication of spontaneous micronucleus frequencies. The cells were fixed with ultracold methanol, treated with ribonuclease, and labeled with anti-CD71 antibody (FITC conjugate) and propidium iodide. This fixing and labeling procedure resulted in the resolution of the micronucleated reticulocyte population and facilitated high-speed acquisition and enumeration via flow cytometry. The number of micronucleated reticulocytes was determined flow cytometrically by the analysis of 10?000 total reticulocytes per bone marrow sample. In addition to these automated measurements, slides stained with acridine orange were prepared and the number of micronuclei per 1000 reticulocytes was determined microscopically for each sample. The resulting data demonstrate that flow cytometry can effectively enumerate micronucleated reticulocytes in mouse bone marrow. The advantages associated with an objective, high throughput scoring methodology are also clearly indicated.  相似文献   
40.
The photosensitive inactivation of trypsin and chymotrypsin by 4-fluoro-3-nitrophenyl azide (FNPA) is described. A dark inhibition was observed at elevated probe concentrations, and was reversible. The enzymes were stable to photolysis in the absence of probe. Photolytic inactivation of trypsin and chymotrypsin with FNPA was found to be irreversible, and occurs in minutes at concentrations of FNPA where dark inhibition is negligible. The photoprobe was equally effective at pH 3 or pH 8. Nonspecific inactivation appears to be low, as evidenced by the stability of glucose oxidase and peroxidase to photolysis with FNPA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号