首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2773篇
  免费   128篇
  2023年   17篇
  2022年   25篇
  2021年   66篇
  2020年   55篇
  2019年   69篇
  2018年   90篇
  2017年   68篇
  2016年   119篇
  2015年   149篇
  2014年   155篇
  2013年   210篇
  2012年   262篇
  2011年   240篇
  2010年   137篇
  2009年   121篇
  2008年   186篇
  2007年   212篇
  2006年   155篇
  2005年   171篇
  2004年   110篇
  2003年   98篇
  2002年   84篇
  2001年   17篇
  2000年   7篇
  1999年   9篇
  1998年   14篇
  1997年   4篇
  1996年   4篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   6篇
  1989年   5篇
  1988年   2篇
  1986年   1篇
  1985年   4篇
  1984年   1篇
  1983年   2篇
  1979年   1篇
  1978年   1篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
  1972年   2篇
  1971年   2篇
  1970年   1篇
  1969年   1篇
  1967年   1篇
  1966年   5篇
  1965年   1篇
排序方式: 共有2901条查询结果,搜索用时 375 毫秒
81.
Allelopathy refers to plant-plant interference mediated mostly by plant released products of secondary metabolism. It was recently suggested that allelochamicals may influence growth of neighboring plants by induction of oxidative stress. We have focused on the role of reactive oxygen species (ROS) and phytohormons (ABA and ethylene) in the biochemical and molecular regulation of plant response to sunflower phytotoxins.Key Words: ABA, allelopathy, ethylene, H2O2, reactive oxygen species, seed germination  相似文献   
82.
Gaucher disease is a lysosomal storage disorder caused by deficiency of human acid β-glucosidase. Recent x-ray structural elucidation of the enzyme alone and in the presence of its inhibitor was done, which provided an excellent template for further studies on the binding of substrate, product and inhibitor. To draw correlations between the clinical manifestation of the disease driven by point mutations, L444P and L444R, and the placement and function of putative S-binding sites, the presented theoretical studies were undertaken, which comprised of molecular dynamics and molecular docking methods. The obtained results indicate the D443 and D445 residues as extremely important for physiological functionality of an enzyme. They also show, although indirectly, that binding of the substrate is influenced by an interplay of E235 and E334 residues, constituting putative substrate binding site, and the region flanked by D435 and D445 residues. Figure The binding of an arbitrarily chosen structure of glucosylceramide (A), conduritol-β-epoxide (B), glucose (C) to the active site D443/D445 (A1, B1, C1) and E320/E340 (A2, B2, C2) of the wild-type structure of human acid-β-glucosidase. A1, B1, C1 blue mask represents the residues D443-D445; red mask represents the residue D444; A2, B2, C2 blue mask represents loop1 (Ser345-Glu349) and loop2 (Val394-Asp399), whereas red mask the residues E235 and 340  相似文献   
83.
The plastid-encoded psaJ gene encodes a hydrophobic low-molecular-mass subunit of photosystem I (PSI) containing one transmembrane helix. Homoplastomic transformants with an inactivated psaJ gene were devoid of PSI-J protein. The mutant plants were slightly smaller and paler than wild-type because of a 13% reduction in chlorophyll content per leaf area caused by an approximately 20% reduction in PSI. The amount of the peripheral antenna proteins, Lhca2 and Lhca3, was decreased to the same level as the core subunits, but Lhca1 and Lhca4 were present in relative excess. The functional size of the PSI antenna was not affected, suggesting that PSI-J is not involved in binding of light-harvesting complex I. The specific PSI activity, measured as NADP(+) photoreduction in vitro, revealed a 55% reduction in electron transport through PSI in the mutant. No significant difference in the second-order rate constant for electron transfer from reduced plastocyanin to oxidized P700 was observed in the absence of PSI-J. Instead, a large fraction of PSI was found to be inactive. Immunoblotting analysis revealed a secondary loss of the luminal PSI-N subunit in PSI particles devoid of PSI-J. Presumably PSI-J affects the conformation of PSI-F, which in turn affects the binding of PSI-N. This together renders a fraction of the PSI particles inactive. Thus, PSI-J is an important subunit that, together with PSI-F and PSI-N, is required for formation of the plastocyanin-binding domain of PSI. PSI-J is furthermore important for stability or assembly of the PSI complex.  相似文献   
84.
Liver, as one of the most important organs involved in lipids and glucose metabolism, is perceived as a key tissue for pharmacotherapy of insulin resistance (IRes) and type 2 diabetes. Ceramides (Cer) are biologically active lipids, which accumulation is associated with the induction of muscle IRes. We sought to determine the role of intrahepatic bioactive lipids production on insulin action in liver of insulin-resistant rats and after myriocin administration. The experiments were conducted on male Wistar rats divided into three groups: Control, fed high-fat diet (HFD), and fed HFD and treated with myriocin (HFD/Myr). Before sacrifice, the animals were infused with a [U-13C]palmitate to calculate lipid synthesis rate by means of tracer incorporation technique in particular lipid groups. Liver Cer, diacylglycerols (DAG), acyl-carnitine concentration, and isotopic enrichment were analyzed by LC/MS/MS. Proteins involved in lipid metabolism and insulin pathway were analyzed by western blot analysis. An OGTT and ITT was also performed. HFD-induced IRes and increased both the synthesis rate and the content of DAG and Cer, which was accompanied by inhibition of an insulin pathway. Interestingly, myriocin treatment reduced synthesis rate not only of Cer but also DAG and improved insulin sensitivity. We conclude that the insulin-sensitizing action of myriocin in the liver is a result of the lack of inhibitory effect of lipids on the insulin pathway, due to the reduction of their synthesis rate. This is the first study showing how the synthesis rate of individual lipid groups in liver changes after myriocin administration.  相似文献   
85.
Pyrroloquinoline quinone (PQQ) acts as a powerful modulator of PGC-1α activation and therefore regulates multiple pathways involved in cellular energy homeostasis. In the present study, we assessed the effects of L6 myotubes incubation with 0.5, 1, and 3 μM PQQ solution for 2 and 24 hr with respect to the cells' lipid metabolism. We demonstrated that PQQ significantly elevates PGC-1α content in a dose- and time-dependent manner with the highest efficiency for 0.5 and 1 µM. The level of free fatty acids was diminished (24 hr: −66%), while an increase in triacylglycerol (TAG) amount was most pronounced after 0.5 μM (2 hr: +93%, 24 hr: +139%) treatment. Ceramide (CER) content was elevated after 2 hr incubation with 0.5 µM and after prolonged exposure to all PQQ concentrations. The cells treated with PQQ for 2 hr exhibited decreased sphinganine (SFA) and sphinganine-1-phosphate (SFA1P) level, while 24 hr incubation resulted in an elevated sphingosine (SFO) amount. In summary, PGC-1α activation promotes TAG and CER synthesis.  相似文献   
86.

This is the first study to generate carrot plants for enhanced salinity tolerance using a single-cell in vitro system. Protoplasts of three carrot accessions were exposed to treatment by seven different concentrations of NaCl (10–400 mM). Salt concentrations higher than 50 mM decreased plating efficiency and those of 200–400 mM of NaCl completely arrested mitotic divisions of cultured cells. The protoplast-derived plants from the control and 50–100 mM NaCl treatment were subjected to an 8-week salt stress in greenhouse conditions induced by salinized soil (EC 3 and 6 mS cm?1). 50 mM NaCl stress applied in vitro induced polyploidy among regenerated plants. The regenerants obtained from the 50 and 100 mM NaCl-treated protoplast cultures grown in saline soil had a higher survival rate compared to the regenerants from the control cultures. The salt-stressed plants accumulated anthocyanins in petioles and produced denser hairs on leaves and petioles in comparison to the control plants. Salt stress influenced pollen viability and seed setting of obtained regenerants. The results suggest that salt stress applied in vitro in protoplast cultures creates variation which allows alleviating the negative effects of salt stress on the development and reproduction of the carrot.

  相似文献   
87.
With the advance of experimental procedures obtaining chemical crosslinking information is becoming a fast and routine practice. Information on crosslinks can greatly enhance the accuracy of protein structure modeling. Here, we review the current state of the art in modeling protein structures with the assistance of experimentally determined chemical crosslinks within the framework of the 13th meeting of Critical Assessment of Structure Prediction approaches. This largest-to-date blind assessment reveals benefits of using data assistance in difficult to model protein structure prediction cases. However, in a broader context, it also suggests that with the unprecedented advance in accuracy to predict contacts in recent years, experimental crosslinks will be useful only if their specificity and accuracy further improved and they are better integrated into computational workflows.  相似文献   
88.
Subnuclear localization of topoisomerase I (top I) is determined by its DNA relaxation activity and a net of its interactions with in majority unidentified nucleolar and nucleoplasmic elements. Here, we recognized SR protein SRSF1 (Serine/arginine-rich splicing factor 1, previously known as SF2/ASF) as a new element of the net. In HeLa cells, overexpression of SRSF1 recruited top I to the nucleoplasm whereas its silencing concentrated it in the nucleolus. Effect of SRSF1 was independent of top I relaxation activity and was the best pronounced for the mutant inactive in relaxation reaction. In HCT116 cells where top I was not released from the nucleolus upon halting relaxation activity, it was also not relocated by elevated level of SRSF1. Out of remaining SR proteins, SRSF5, SRSF7, and SRSF9 did not influence the localization of top I in HeLa cells whereas overexpression of SRSF2, SRSF3, SRSF6, and partly SRSF4 concentrated top I in the nucleolus, most possibly due to the reduction of the SRSF1 accessibility. Specific effect of SRSF1 was exerted because of its distinct RS domain. Silencing of SRSF1 compensated the deletion of the top I N-terminal region, individually responsible for nucleoplasmic localization of the mutant, and restored the wild-type phenotype of deletion mutant localization. SRSF1 was essential for the camptothecin-induced clearance from the nucleolus. These results suggest a possible role of SRSF1 in establishing partition of top I between the nucleolus and the nucleoplasm in some cell types with distinct combinations of SR proteins levels.  相似文献   
89.
Allostery is one of the most important features of proteins. It greatly contributes to the complexity of life, since it enables possibility of precise tuning of protein function, as well as performing more than one function per protein. Probe dependence is one of the unique features of allostery. It allows a protein to respond differently to the same allosteric modulator when different drugs or transmitters are bound. Unfortunately, allosteric mechanisms are difficult to investigate experimentally. Instead, they can be reproduced artificially in simulations. We simulated in silico a native-like cell membrane fragment with an active-state human μ opioid receptor (MOR) in order to investigate diverse effects of a receptor’s positive allosteric modulator on various agonists. Particular emphasis on native-likeness of the environment was put. We managed to reproduce the experimentally observed effects, which allowed us to take deeper insight into their underlying mechanisms. We found an allosteric pathway in the receptor, leading from the ligand binding site to the intracellular, effector site. We observed that the modulator affected the pathway, inducing different resultant responses for full and partial agonists.  相似文献   
90.
Osteoporosis is an important public health problem worldwide. Among the countries with a very high population risk of fractures, there are those with the highest level of economic development. Osteoporotic fractures are the main cause of disability among elderly people, and the resultant disabilities require particularly large financial support associated not only with the direct treatment of the fracture but also with the necessity for long-term rehabilitation and care for the disabled person. Many well-established factors can have impact on bone mass and fracture risk. Recently, it has been hypothesized that working during nighttime which leads to endocrine disorders may have an indirect impact on bone physiology among night shift workers. Therefore, it can be presumed that the night shift work may contribute to the etiology of osteoporosis. The aim of our work was to make a review of the epidemiological evidence on the association between night shift work and bone mineral density or fracture risk as well as to discuss the potential biological mechanisms linking the work under this system with the development of osteoporosis. We have identified only four studies investigating the association between system of work and bone mineral density or fracture risk among workers. The findings of three out of four studies support the hypothesis. None of the studies has investigated a potential relationship between night shift work and bone turnover markers. Given that there have been no epidemiological studies in European countries that would concern working populations and the noticeable difference in the risk of osteoporosis between communities, further studies are warranted to elucidate the problem. It is presumed that further in-depth studies will not only identify the underlying factors of the disease but also contribute to developing guidelines for policy makers and employers for primary prevention of osteoporosis in workplace.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号