首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2193篇
  免费   201篇
  2023年   8篇
  2022年   32篇
  2021年   46篇
  2020年   29篇
  2019年   61篇
  2018年   73篇
  2017年   65篇
  2016年   75篇
  2015年   123篇
  2014年   136篇
  2013年   164篇
  2012年   153篇
  2011年   204篇
  2010年   126篇
  2009年   69篇
  2008年   133篇
  2007年   120篇
  2006年   144篇
  2005年   120篇
  2004年   91篇
  2003年   91篇
  2002年   66篇
  2001年   16篇
  2000年   8篇
  1999年   13篇
  1998年   5篇
  1997年   10篇
  1996年   10篇
  1995年   10篇
  1993年   5篇
  1992年   10篇
  1991年   9篇
  1990年   11篇
  1988年   11篇
  1987年   10篇
  1986年   8篇
  1985年   7篇
  1984年   6篇
  1983年   9篇
  1982年   8篇
  1981年   7篇
  1980年   6篇
  1978年   5篇
  1977年   8篇
  1976年   9篇
  1975年   15篇
  1974年   7篇
  1973年   7篇
  1972年   4篇
  1970年   7篇
排序方式: 共有2394条查询结果,搜索用时 31 毫秒
931.
932.
933.
The GTPases Rac and Cdc42 play a pivotal role in the establishment of cell polarity by stimulating biogenesis of tight junctions (TJs). In this study, we show that the Rac-specific guanine nucleotide exchange factor Tiam1 (T-lymphoma invasion and metastasis) controls the cell polarity of epidermal keratinocytes. Similar to wild-type (WT) keratinocytes, Tiam1-deficient cells establish primordial E-cadherin-based adhesions, but subsequent junction maturation and membrane sealing are severely impaired. Tiam1 and V12Rac1 can rescue the TJ maturation defect in Tiam1-deficient cells, indicating that this defect is the result of impaired Tiam1-Rac signaling. Tiam1 interacts with Par3 and aPKCzeta, which are two components of the conserved Par3-Par6-aPKC polarity complex, and triggers biogenesis of the TJ through the activation of Rac and aPKCzeta, which is independent of Cdc42. Rac is activated upon the formation of primordial adhesions (PAs) in WT but not in Tiam1-deficient cells. Our data indicate that Tiam1-mediated activation of Rac in PAs controls TJ biogenesis and polarity in epithelial cells by association with and activation of the Par3-Par6-aPKC polarity complex.  相似文献   
934.
Stimulation of the TCR leads to an oscillatory release of free calcium that activates members of the calcium/calmodulin-dependent protein kinase II (CaMKII) family. The CaMKII molecules have profound and lasting effects on cellular signaling in several cell types, yet the role of CaMKII in T cells is still poorly characterized. In this report we describe a splice variant of CaMKIIbeta, CaMKIIbeta'e, in mouse T cells. We have determined its function, along with that of CaMKIIgamma, by introducing the active and kinase-dead mutants into activated P14 TCR transgenic T cells using retroviral transduction. Active CaMKII enhanced the proliferation and cytotoxic activity of T cells while reducing their IL-2 production. Furthermore, it induced a profound state of unresponsiveness that could be overcome only by prolonged culture in IL-2. These results indicate that members of the CaMKII family play an important role in regulation of CD8 T cell proliferation, cytotoxic effector function, and the response to restimulation.  相似文献   
935.
Nicotiana plumbaginifolia NpPDR1, a plasma membrane pleiotropic drug resistance-type ATP-binding cassette transporter formerly named NpABC1, has been suggested to transport the diterpene sclareol, an antifungal compound. However, direct evidence for a role of pleiotropic drug resistance transporters in the plant defense is still lacking. In situ immunolocalization and histochemical analysis using the gusA reporter gene showed that NpPDR1 was constitutively expressed in the whole root, in the leaf glandular trichomes, and in the flower petals. However, NpPDR1 expression was induced in the whole leaf following infection with the fungus Botrytis cinerea, and the bacteria Pseudomonas syringae pv tabaci, Pseudomonas fluorescens, and Pseudomonas marginalis pv marginalis, which do not induce a hypersensitive response in N. plumbaginifolia, whereas a weaker response was observed using P. syringae pv syringae, which does induce a hypersensitive response. Induced NpPDR1 expression was more associated with the jasmonic acid than the salicylic acid signaling pathway. These data suggest that NpPDR1 is involved in both constitutive and jasmonic acid-dependent induced defense. Transgenic plants in which NpPDR1 expression was prevented by RNA interference showed increased sensitivity to sclareol and reduced resistance to B. cinerea. These data show that NpPDR1 is involved in pathogen resistance and thus demonstrate a new role for the ATP-binding cassette transporter family.  相似文献   
936.
The isoflavones--genistein and daidzein -- compounds found in high concentrations in soy play an important role in prevention of many diseases and affect some metabolic pathways. In the performed experiment it was demonstrated that genistein (5mg/kg b.w.) administered intragastrically for three days to male Wistar rats substantially diminished blood leptin level. Studies with isolated rat adipocytes revealed that this phytoestrogen strongly restricted leptin secretion from these cells. These effects were not accompanied by any changes in leptin gene expression in adipocytes. Daidzein-- an analogue of genistein -- used at similar concentrations did not affect blood leptin concentration, leptin secretion and expression of its gene. To determine the influence of genistein and daidzein on leptin release, adipocytes isolated from the epididymal fat tissue were incubated for 2h in Krebs--Ringer buffer. Leptin secretion stimulated by glucose with insulin was significantly diminished by genistein (0.25--1mM). This effect of genistein may arise from several aspects of its action in adipocytes documented in the literature such as the inhibition of glucose transport and metabolism, the attenuation of insulin signalling, the inhibition of cAMP phosphodiesterase and the stimulation of lipolysis. However, the bypassing of the restrictive action of genistein on glucose transport and glycolysis (by the use of alanine instead of glucose) and on insulin action (by the use of nicotinic acid) was not sufficient to restore leptin secretion from isolated adipocytes. It was also demonstrated that the restriction of the stimulatory influence of genistein on cAMP/protein kinase A (PKA) pathway (by the inhibition of PKA activity) did not improve leptin release. Results obtained in our experiments point at the restriction of glucose metabolism following formation of pyruvate as the pivotal reason of the inhibitory action of genistein on leptin release.  相似文献   
937.
1,12-substituted tetracyclines as antioxidant agents   总被引:3,自引:0,他引:3  
Novel hydroxypyrazoline derivatives of tetracycline and minocycline have been synthesized through the reaction of these tetracyclines with hydrazine. The formation of a new chiral center at C12 is stereospecific to give 12S-12-hydroxy-1,12-pyrazolinotetracycline. A reaction mechanism for the formation of these novel tetracycline derivatives has been proposed. Hydroxypyrazolinotetracyclines exhibit no binding to Mg2+ and Zn2+, features that are required for antibiotic activity and matrix metalloproteinase (MMP) inhibitions, respectively. The modification toward their hydroxypyrazolino derivatives significantly improved the antioxidant activities of tetracycline and minocycline, as shown by three commonly used assays (DPPH, ABTS+, and superoxide scavenging). 12S-Hydroxy-1,12-pyrazolinominocycline is a promising tetracycline-based antioxidant devoid of antibiotic properties and MMP inhibitory activity, which could be beneficial in the treatment of complications related to oxidative stress.  相似文献   
938.
939.
940.
THE FINE STRUCTURE OF DIPLOCOCCUS PNEUMONIAE   总被引:23,自引:0,他引:23       下载免费PDF全文
The fine structure of an unencapsulated strain of Diplococcus pneumoniae is described. A striking feature of these bacteria is an intracytoplasmic membrane system which appears to be an extension of septa of dividing bacteria. The possible function of these structures and their relationship to the plasma membrane and other types of intracytoplasmic membranes found in pneumococcus is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号