首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2327篇
  免费   170篇
  国内免费   2篇
  2499篇
  2023年   11篇
  2022年   26篇
  2021年   47篇
  2020年   42篇
  2019年   47篇
  2018年   55篇
  2017年   42篇
  2016年   70篇
  2015年   101篇
  2014年   83篇
  2013年   161篇
  2012年   178篇
  2011年   203篇
  2010年   131篇
  2009年   113篇
  2008年   154篇
  2007年   160篇
  2006年   134篇
  2005年   136篇
  2004年   118篇
  2003年   93篇
  2002年   102篇
  2001年   13篇
  2000年   15篇
  1999年   13篇
  1998年   18篇
  1997年   18篇
  1996年   9篇
  1995年   7篇
  1994年   8篇
  1993年   19篇
  1992年   11篇
  1991年   6篇
  1990年   15篇
  1989年   9篇
  1988年   5篇
  1987年   11篇
  1986年   7篇
  1985年   9篇
  1984年   8篇
  1983年   4篇
  1982年   10篇
  1981年   9篇
  1980年   5篇
  1979年   6篇
  1978年   10篇
  1977年   5篇
  1975年   9篇
  1973年   8篇
  1928年   3篇
排序方式: 共有2499条查询结果,搜索用时 13 毫秒
31.
The CB1 and CB2 cannabinoid receptors belong to the GPCR superfamily and are associated with a variety of physiological and pathophysiological processes. Both receptors, with several lead compounds at different phases of development, are potentially useful targets for drug discovery. For this reason, fully elucidating the structural features of these membrane-associated proteins would be extremely valuable in designing more selective, novel therapeutic drug molecules. As a first step toward obtaining information on the structural features of the drug-receptor complex, we describe the full mass spectrometric (MS) analysis of the recombinant human cannabinoid CB2 receptor. This first complete proteomic characterization of a GPCR protein beyond rhodopsin was accomplished by a combination of several LC/MS approaches involving nanocapillary liquid chromatography, coupled with either a quadrupole-linear ion trap or linear ion trap-FTICR mass spectrometer. The CB2 receptor, with incorporated N-terminal FLAG and C-terminal HIS6 epitope tags, was functionally expressed in baculovirus cells and purified using a single step of anti-FLAG M2 affinity chromatography. To overcome the difficulties involved with in-gel digestion, due to the highly hydrophobic nature of this membrane-associated protein, we conducted in-solution trypsin and chymotrypsin digestions of purified and desalted samples in the presence of a low concentration of CYMAL5. This was followed by nanoLC peptide separation and analysis using a nanospray ESI source operated in the positive mode. The results can be reported confidently, based on the overlapping sequence data obtained using the highly mass accurate LTQ-FT and the 4000 Q-Trap mass spectrometers. Both instruments gave very similar patterns of identified peptides, with full coverage of all transmembrane helices, resulting in the complete characterization of the cannabinoid CB2 receptor. Mass spectrometric identification of all amino acid residues in the cannabinoid CB2 receptor is a key step toward the "Ligand Based Structural Biology" approach developed in our laboratory for characterizing ligand binding sites in GPCRs using a variety of covalent cannabinergic ligands.  相似文献   
32.
Indoles are very common in the body and diet and participate in many biochemical processes. A total of twenty-nine indoles and analogs were examined for their properties as antioxidants and radical scavengers against 2,2'-Azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) ABTS*+ radical cation. With only a few exceptions, indoles reacted nonspecifically and quenched this radical at physiological pH affording ABTS. Indoleamines like tryptamine, serotonin and methoxytryptamine, neurohormones (melatonin), phytohormones (indoleacetic acid and indolepropionic acid), indoleamino acids like L-tryptophan and derivatives (N-acetyltryptophan, L-abrine, tryptophan ethyl ester), indolealcohols (tryptophol and indole-3-carbinol), short peptides containing tryptophan, and tetrahydro-beta-carboline (pyridoindole) alkaloids like the pineal gland compound pinoline, acted as radical scavengers and antioxidants in an ABTS assay-measuring total antioxidant activity. Their trolox equivalent antioxidant capacity (TEAC) values ranged from 0.66 to 3.9 mM, usually higher than that for Trolox and ascorbic acid (1 mM). The highest antioxidant values were determined for melatonin, 5-hydroxytryptophan, trp-trp and 5-methoxytryptamine. Active indole compounds were consumed during the reaction with ABTS*+ and some tetrahydropyrido indoles (e.g. harmaline and 1-methyl-1,2,3,4-tetrahydro-beta-carboline-3-carboxylic acid ethyl ester) afforded the corresponding fully aromatic beta-carbolines (pyridoindoles), that did not scavenge ABTS*+. Radical scavenger activity of indoles against ABTS*+ was higher at physiological pH than at low pH. These results point out to structural compounds with an indole moiety as a class of radical scavengers and antioxidants. This activity could be of biological significance given the physiological concentrations and body distribution of some indoles.  相似文献   
33.
Endocytosis by random initiation and stabilization of clathrin-coated pits   总被引:29,自引:0,他引:29  
Clathrin-coated vesicles carry traffic from the plasma membrane to endosomes. We report here the real-time visualization of cargo sorting and endocytosis by clathrin-coated pits in living cells. We have detected the formation of coats by monitoring incorporation of fluorescently tagged clathrin or its adaptor AP-2; we have also followed clathrin-mediated uptake of transferrin and of single LDL or reovirus particles. The intensity of a cargo-loaded clathrin cluster grows steadily during its lifetime, and the time required to complete assembly is proportional to the size of the cargo particle. These results are consistent with a nucleation-growth mechanism and an approximately constant growth rate. There are no strongly preferred nucleation sites. A proportion of the nucleation events are weak and short lived. Cargo incorporation occurs primarily or exclusively in a newly formed coated pit. Our data lead to a model in which coated pits initiate randomly but collapse unless stabilized, perhaps by cargo capture.  相似文献   
34.

Background

The intestinal microbiota protect the host against enteric pathogens through a defense mechanism termed colonization resistance. Antibiotics excreted into the intestinal tract may disrupt colonization resistance and alter normal metabolic functions of the microbiota. We used a mouse model to test the hypothesis that alterations in levels of bacterial metabolites in fecal specimens could provide useful biomarkers indicating disrupted or intact colonization resistance after antibiotic treatment.

Methods

To assess in vivo colonization resistance, mice were challenged with oral vancomycin-resistant Enterococcus or Clostridium difficile spores at varying time points after treatment with the lincosamide antibiotic clindamycin. For concurrent groups of antibiotic-treated mice, stool samples were analyzed using quantitative real-time polymerase chain reaction to assess changes in the microbiota and using non-targeted metabolic profiling. To assess whether the findings were applicable to another antibiotic class that suppresses intestinal anaerobes, similar experiments were conducted with piperacillin/tazobactam.

Results

Colonization resistance began to recover within 5 days and was intact by 12 days after clindamycin treatment, coinciding with the recovery bacteria from the families Lachnospiraceae and Ruminococcaceae, both part of the phylum Firmicutes. Clindamycin treatment caused marked changes in metabolites present in fecal specimens. Of 484 compounds analyzed, 146 (30%) exhibited a significant increase or decrease in concentration during clindamycin treatment followed by recovery to baseline that coincided with restoration of in vivo colonization resistance. Identified as potential biomarkers of colonization resistance, these compounds included intermediates in carbohydrate or protein metabolism that increased (pentitols, gamma-glutamyl amino acids and inositol metabolites) or decreased (pentoses, dipeptides) with clindamycin treatment. Piperacillin/tazobactam treatment caused similar alterations in the intestinal microbiota and fecal metabolites.

Conclusions

Recovery of colonization resistance after antibiotic treatment coincided with restoration of several fecal bacterial metabolites. These metabolites could provide useful biomarkers indicating intact or disrupted colonization resistance during and after antibiotic treatment.  相似文献   
35.
Binocular vision is a visual property that allows fine discrimination of in-depth distance (stereopsis), as well as enhanced light and contrast sensitivity. In mammals enhanced binocular vision is structurally associated with a large degree of frontal binocular overlap, the presence of a corresponding retinal specialization containing a fovea or an area centralis, and well-developed ipsilateral retinal projections to the lateral thalamus (GLd). We compared these visual traits in two visually active species of the genus Octodon that exhibit contrasting visual habits: the diurnal Octodon degus, and the nocturnal Octodon lunatus. The O. lunatus visual field has a prominent 100° frontal binocular overlap, much larger than the 50° of overlap found in O. degus. Cells in the retinal ganglion cell layer were 40% fewer in O. lunatus (180,000) than in O. degus (300,000). O. lunatus has a poorly developed visual streak, but a well developed area centralis, located centrally near the optic disk (peak density of 4,352 cells/mm2). O. degus has a highly developed visual streak, and an area centralis located more temporally (peak density of 6,384 cells/mm2). The volumes of the contralateral GLd and superior colliculus (SC) are 15% larger in O. degus compared to O. lunatus. However, the ipsilateral projections to GLd and SC are 500% larger in O. lunatus than in O. degus. Other retinorecipient structures related to ocular movements and circadian activity showed no statistical differences between species. Our findings strongly suggest that nocturnal visual behavior leads to an enhancement of the structures associated with binocular vision, at least in the case of these rodents. Expansion of the binocular visual field in nocturnal species may have a beneficial effect in light and contrast sensitivity, but not necessarily in stereopsis. We discuss whether these conclusions can be extended to other mammalian and non-mammalian amniotes.  相似文献   
36.
Viral envelope proteins mediate interactions with host cells, leading to internalization and intracellular propagation. Envelope proteins are glycosylated and are known to serve important functions in masking host immunity to viral glycoproteins. However, the viral infectious cycle in cells may also lead to aberrant glycosylation that may elicit immunity. Our knowledge of immunity to aberrant viral glycans and glycoproteins is limited, potentially due to technical limitations in identifying immunogenic glycans and glycopeptide epitopes. This work describes three different complementary methods for high-throughput screening and identification of potential immunodominant O-glycopeptide epitopes on viral envelope glycoproteins: (i) on-chip enzymatic glycosylation of scan peptides, (ii) chemical glycopeptide microarray synthesis, and (iii) a one-bead-one-compound random glycopeptide library. We used herpes simplex virus type 2 (HSV-2) as a model system and identified a simple O-glycopeptide pan-epitope, (501)PPA(GalNAc)TAPG(507), on the mature gG-2 glycoprotein that was broadly recognized by IgG antibodies in HSV-2-infected individuals but not in HSV-1-infected or noninfected individuals. Serum reactivity to the extended sialyl-T glycoform was tolerated, suggesting that self glycans can participate in immune responses. The methods presented provide new insight into viral immunity and new targets for immunodiagnostic and therapeutic measures.  相似文献   
37.
Previous studies indicated that the determinants of coenzyme specificity in ferredoxin-NADP+ reductase (FNR) from Anabaena are situated in the 2'-phosphate (2'-P) NADP+ binding region, and also suggested that other regions must undergo structural rearrangements of the protein backbone during coenzyme binding. Among the residues involved in such specificity could be those located in regions where interaction with the pyrophosphate group of the coenzyme takes place, namely loops 155-160 and 261-268 in Anabaena FNR. In order to learn more about the coenzyme specificity determinants, and to better define the structural basis of coenzyme binding, mutations in the pyrophosphate and 2'-P binding regions of FNR have been introduced. Modification of the pyrophosphate binding region, involving residues Thr-155, Ala-160, and Leu-263, indicates that this region is involved in determining coenzyme specificity and that selected alterations of these positions produce FNR enzymes that are able to bind NAD+. Thus, our results suggest that slightly different structural rearrangements of the backbone chain in the pyrophosphate binding region might determine FNR specificity for the coenzyme. Combined mutations at the 2'-P binding region, involving residues Ser-223, Arg-224, Arg-233, and Tyr-235, in combination with the residues mentioned above in the pyrophosphate binding region have also been carried out in an attempt to increase the FNR affinity for NAD+/H. However, in most cases the analyzed mutants lost the ability for NADP+/H binding and electron transfer, and no major improvements were observed with regard to the efficiency of the reactions with NAD+/H. Therefore, our results confirm that determinants for coenzyme specificity in FNR are also situated in the pyrophosphate binding region and not only in the 2'-P binding region. Such observations also suggest that other regions of the protein, yet to be identified, might also be involved in this process.  相似文献   
38.
A method for ligand screening by automated nano-electrospray ionization mass spectrometry (nano-ESI/MS) is described. The core of the system consisted of a chip-based platform for automated sample delivery from a 96-well plate and subsequent analysis based on noncovalent interactions. Human fatty acid binding protein, H-FABP (heart) and A-FABP (adipose), with small potential ligands was analyzed. The technique has been compared with a previously reported method based on nuclear magnetic resonance (NMR), and excellent correlation with the found hits was obtained. In the current MS screening method, the cycle time per sample was 1.1 min, which is approximately 50 times faster than NMR for single compounds and approximately 5 times faster for compound mixtures. High reproducibility was achieved, and the protein consumption was in the range of 88 to 100 picomoles per sample. Futhermore, a novel protocol for preparation of A-FABP without the natural ligand is presented. The described screening approach is suitable for ligand screening very early in the drug discovery process before conventional high-throughput screens (HTS) are developed and/or used as a secondary screening for ligands identified by HTS.  相似文献   
39.
The recovery of radioactivity in the urine of guineapigs following a bolus intravenous dose of chromatographically pure 14C-Ntau-methylhistidine was measured in order to test whether the excretion of Ntau-methylhistidine (Ntau-MH) is a valid index of myofibrillar protein breakdown in these animals. Four male and four female guineapigs were dosed and after 7 days, 91.65+/-2.82% and 3.58+/-0.91% of injected radioactivity was recovered in the excreta and tissues, respectively. The average total recovery of 95.2+/-3.0% was not significantly different from 100%. Male guineapigs excreted the radioactivity more slowly than females (70% of the dose excreted within 74 h vs 39 h, respectively) but cumulative excretion at 7 days was the same for each sex. Chromatographic analysis of the urine showed almost all of the radioactivity to be associated with a single peak corresponding to Ntau-MH, indicating a lack of significant metabolism. These data show that although the clearance of 14C-Ntau-MH is slower than in rats or humans the urinary excretion of Ntau-MH is a valid index for myofibrillar protein degradation in the guineapig.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号