首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2274篇
  免费   167篇
  国内免费   2篇
  2023年   10篇
  2022年   25篇
  2021年   47篇
  2020年   42篇
  2019年   47篇
  2018年   55篇
  2017年   43篇
  2016年   68篇
  2015年   102篇
  2014年   82篇
  2013年   163篇
  2012年   171篇
  2011年   204篇
  2010年   129篇
  2009年   111篇
  2008年   154篇
  2007年   159篇
  2006年   136篇
  2005年   133篇
  2004年   119篇
  2003年   91篇
  2002年   98篇
  2001年   12篇
  2000年   12篇
  1999年   12篇
  1998年   17篇
  1997年   18篇
  1996年   8篇
  1995年   7篇
  1994年   8篇
  1993年   16篇
  1992年   9篇
  1991年   5篇
  1990年   12篇
  1989年   9篇
  1988年   5篇
  1987年   10篇
  1986年   7篇
  1985年   8篇
  1984年   6篇
  1983年   4篇
  1982年   9篇
  1981年   8篇
  1980年   5篇
  1979年   6篇
  1978年   9篇
  1975年   6篇
  1974年   3篇
  1973年   8篇
  1972年   3篇
排序方式: 共有2443条查询结果,搜索用时 31 毫秒
991.
Extracellular fungal glycolipid biosurfactants have attracted attention because productivities can be high, cheap substrates can be used, the molecules are secreted into the medium and the downstream processing is relatively simple. Three classes of extracellular fungal glycolipid biosurfactants have provided most of the scientific advances in this area, namely sophorolipids, mannosylerythritol lipids and cellobioselipids. Polyol lipids, a fourth class of extracellular fungal glycolipid biosurfactants, comprise two groups of molecules: liamocins produced by the yeast-like fungus Aureobasidium pullulans, and polyol esters of fatty acids, produced by some Rhodotorula yeast species. Both are amphiphilic, surface active molecules with potential for commercial development as surfactants for industrial and household applications. The current knowledge of polyol lipids highlights an emerging group of extracellular fungal glycolipid biosurfactants and provides a perspective of what next steps are needed to harness the benefits and applications of this novel group of molecules.  相似文献   
992.
Fungi are well known for their metabolic versatility, whether it is the degradation of complex organic substrates or the biosynthesis of intricate secondary metabolites. The vast majority of studies concerning fungal metabolic pathways for sulfur assimilation have focused on conventional sources of sulfur such as inorganic sulfur ions and sulfur-containing biomolecules. Less is known about the metabolic pathways involved in the assimilation of so-called “alternative” sulfur sources such as sulfides, sulfoxides, sulfones, sulfonates, sulfate esters and sulfamates. This review summarizes our current knowledge regarding the structural diversity of sulfur compounds assimilated by fungi as well as the biochemistry and genetics of metabolic pathways involved in this process. Shared sequence homology between bacterial and fungal sulfur assimilation genes have lead to the identification of several candidate genes in fungi while other enzyme activities and pathways so far appear to be specific to the fungal kingdom. Increased knowledge of how fungi catabolize this group of compounds will ultimately contribute to a more complete understanding of sulfur cycling in nature as well as the environmental fate of sulfur-containing xenobiotics.  相似文献   
993.
994.
Factors driving the species richness and distribution of bryophytes are poorly studied and not well understood, particularly in grasslands. We analysed the occurrence of bryophyte species and variation in species richness across 674 plots (0.5?m?×?0.5?m) in alvar vegetation (grassland on limestone pavement with thin or no soil) on Öland (Sweden) in relation to substrate characteristics and chemistry, inundation frequency, grazing pressure and geographical variables. We found 148 taxa, including 11 nationally red-listed ones. Species richness per plot was significantly associated with substrate type, positively associated with pH and grazing intensity, but negatively associated with soil depth. However, richness of species typical of, or restricted to, alvar habitats responded differently to richness of species more common in other habitats. Typical alvar species were favoured by high pH, shallow soil and low phosphate availability, while generalists preferred relatively low pH, higher phosphate availability and organic or mull soil types. Distance from the alvar margin had only weak effects. Concerning the effects on individual species and community composition, inundation frequency and pH were found to have the largest effects, although other factors (substrate type, soil depth, bare soil, bare stone, phosphate availability and grazing pressure) were more important for some individual species, stressing the importance of microsite variability and variability in management for regional species richness. From a conservation perspective, it is concluded that grazing is generally positive whilst factors increasing phosphate availability may disadvantage the typical alvar species, and proximity to the alvar margin is not a major problem.  相似文献   
995.
996.
PM2 is an Aeromonas-specific bacteriophage isolated on A. hydrophila strain AH-3. The bacteriophage receptor for this phage was found to be the lipopolysaccharide (LPS), specifically a low-molecular weight LPS fraction (LPS-core oligosaccharides). Mutants resistant to this phage were isolated and found to be devoid of LPS O-antigen and altered in the LPS-core. No other outer-membrane (OM) molecules appeared to be involved in phage binding.  相似文献   
997.
Uptake and utilization of nitrate were investigated in Hordeum vulgare L. cvs Mette and Golf in the vegetative stage, 2 and 4 weeks after sowing. The plants were subjected to a light/dark cycle of 16/8 h (18/12°C). Results obtained with the two genotypes were essentially similar. In the light, xylem nitrate transport and shoot nitrate reduction approximately equalled the amount of nitrate absorbed by the root. A drastic decline in translocation to the shoot in darkness was entirely attributable to decreased transpiration since no major changes in xylem nitrate concentration were observed. Darkening caused only a slight decrease in nitrate uptake, while root nitrate reduction was enhanced. Nitrate starvation for 2 days did not significantlly affect dry matter increment, but resulted in a drastic drop in previously accumulated nitrate, indicating that the stored nitrate is accessible and can sustain unrestricted growth. Uptake increased upon re-addition of nitrate and after 8 h it was about twice that of non-starved plants. During recovery, restoration of root nitrate pools and root nitrate reduction took precedence over shoot nitrate accumulation and reduction. Net nitrate uptake and removal of nitrate from the root to the transpiration stream seem to be decisive for the rate of root nitrate reduction.  相似文献   
998.
999.
In this study, we compared the effects of two diets containing different isoflavone concentrations on the isoflavone transfer from feed into milk and on the rumen microbiota in lactating dairy cows. The on-farm experiment was conducted on twelve lactating Czech Fleckvieh x Holstein cows divided into two groups, each with similar mean milk yield. Twice daily, cows were individually fed a diet based on maize silage, meadow hay and supplemental mixture. Control group (CTRL) received the basal diet while the experimental group (EXP) received the basal diet supplemented with 40% soybean isoflavone extract. The average daily isoflavone intake in the EXP group (16 g/day) was twice as high as that in the CTRL group (8.4 g/day, P<0.001). Total isoflavone concentrations in milk from the CTRL and EXP groups were 96.89 and 276.07 μg/L, respectively (P<0.001). Equol concentrations in milk increased from 77.78 μg/L in the CTRL group to 186.30 μg/L in the EXP group (P<0.001). The V3-4 region of bacterial 16S rRNA genes was used for metagenomic analysis of the rumen microbiome. The experimental cows exhibited fewer OTUs at a distance level of 0.03 compared to control cows (P<0.05) and reduced microbial richness compared to control cows based on the calculated Inverse Simpson and Shannon indices. Non-metric multidimensional scaling analysis showed that the major contributor to separation between the experimental and control groups were changes in the representation of bacteria belonging to the phyla Bacteroidetes, Proteobacteria, Firmicutes, and Planctomycetes. Surprisingly, a statistically significant positive correlation was found only between isoflavones and the phyla Burkholderiales (r = 0.65, P<0.05) and unclassified Betaproteobacteria (r = 0.58, P<0.05). Previous mouse and human studies of isoflavone effects on the composition of gastrointestinal microbial populations generally report similar findings.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号