首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2368篇
  免费   178篇
  国内免费   2篇
  2548篇
  2023年   14篇
  2022年   27篇
  2021年   48篇
  2020年   42篇
  2019年   48篇
  2018年   54篇
  2017年   44篇
  2016年   70篇
  2015年   106篇
  2014年   86篇
  2013年   160篇
  2012年   176篇
  2011年   204篇
  2010年   131篇
  2009年   115篇
  2008年   158篇
  2007年   160篇
  2006年   140篇
  2005年   134篇
  2004年   121篇
  2003年   95篇
  2002年   100篇
  2001年   16篇
  2000年   16篇
  1999年   14篇
  1998年   18篇
  1997年   18篇
  1996年   9篇
  1995年   8篇
  1994年   8篇
  1993年   16篇
  1992年   13篇
  1991年   9篇
  1990年   15篇
  1989年   16篇
  1988年   7篇
  1987年   13篇
  1986年   7篇
  1985年   13篇
  1984年   11篇
  1983年   4篇
  1982年   12篇
  1981年   10篇
  1980年   7篇
  1979年   8篇
  1978年   9篇
  1977年   4篇
  1976年   4篇
  1975年   6篇
  1973年   9篇
排序方式: 共有2548条查询结果,搜索用时 20 毫秒
91.
92.
Effective management and conservation of an ecosystem requires information on species assemblages as well as reliable estimates of population sizes to plan, implement and evaluate management strategies. The Brazilian Pantanal is one of the world's largest freshwater wetlands and considered a priority landscape for wildlife conservation. It is subject to pluri-annual extreme dry and wet periods, which cause extreme flood and drought events, which strongly affect wildlife. Using the line-transect method, this study examined the distribution of densities and metabolic biomass of medium- to large-sized nonvolant mammals in forest, cerrado and floodplain landscapes, in an area with low anthropogenic influence, in the central area of the Brazilian Pantanal during a prolonged drought. Comparisons with a previous survey conducted during years of average rainfall in part of the study area suggest that population fluctuations of certain species are closely associated with water due to the drought. Results from this study showed that mammal assemblages varied between landscapes. Forested landscapes have the highest densities of mammals and are the most important in terms of relative energy consumption. In addition, at the time of the study, frugivores were found to have higher energy consumption than browser/grazers across the three landscapes; most fruits are produced in forested areas stressing their importance. By converting forested landscapes into grasslands, the intensification of ranching practices seriously threatens biodiversity and ecological processes in the region.  相似文献   
93.
Spider dragline silk, one of the strongest polymers in nature, is composed of proteins termed major ampullate spidroin (MaSp) 1 and MaSp2. The N-terminal (NT) domain of MaSp1 produced by the nursery web spider Euprosthenops australis acts as a pH-sensitive relay, mediating spidroin assembly at around pH 6.3. Using amide hydrogen/deuterium exchange combined with mass spectrometry (MS), we detected pH-dependent changes in deuterium incorporation into the core of the NT domain, indicating global structural stabilization at low pH. The stabilizing effects were diminished or abolished at high ionic strength, or when the surface-exposed residues Asp40 and Glu84 had been exchanged with the corresponding amides. Nondenaturing electrospray ionization MS revealed the presence of dimers in the gas phase at pH values below—but not above—6.4, indicating a tight electrostatic association that is dependent on Asp40 and Glu84 at low pH. Results from analytical ultracentrifugation support these findings. Together, the data suggest a mechanism whereby lowering the pH to < 6.4 results in structural changes and alteration of charge-mediated interactions between subunits, thereby locking the spidroin NT dimer into a tight entity important for aggregation and silk formation.  相似文献   
94.
Microbial pathogens exploit the clathrin endocytic machinery to enter host cells. Vesicular stomatitis virus (VSV), an enveloped virus with bullet-shaped virions that measure 70 x 200 nm, enters cells by clathrin-dependent endocytosis. We showed previously that VSV particles exceed the capacity of typical clathrin-coated vesicles and instead enter through endocytic carriers that acquire a partial clathrin coat and require local actin filament assembly to complete vesicle budding and internalization. To understand why the actin system is required for VSV uptake, we compared the internalization mechanisms of VSV and its shorter (75 nm long) defective interfering particle, DI-T. By imaging the uptake of individual particles into live cells, we found that, as with parental virions, DI-T enters via the clathrin endocytic pathway. Unlike VSV, DI-T internalization occurs through complete clathrin-coated vesicles and does not require actin polymerization. Since VSV and DI-T particles display similar surface densities of the same attachment glycoprotein, we conclude that the physical properties of the particle dictate whether a virus-containing clathrin pit engages the actin system. We suggest that the elongated shape of a VSV particle prevents full enclosure by the clathrin coat and that stalling of coat assembly triggers recruitment of the actin machinery to finish the internalization process. Since some enveloped viruses have pleomorphic particle shapes and sizes, our work suggests that they may use altered modes of endocytic uptake. More generally, our findings show the importance of cargo geometry for specifying cellular entry modes, even when the receptor recognition properties of a ligand are maintained.  相似文献   
95.
The development of SO42- influx in roots and sulfur transport to shoots was followed in 35S-tracer experiments for sulfur-deficient spring wheat (Triticum aestivum L. cv. Svenno) seedlings pretreated for various time periods (0–24 h) in nutrient solutions with SO42-. Effects of the metabolic inhibitor 2,4-dinitrophenol (DNP) and the protein synthesis inhibitor cycloheximide (CH) on SO42- influx were also evaluated. The SO42- influx appears feedback-regulated by the internal sulfur level of the roots. Regulation may be achieved solely by a rapidly changed SO42- carrier activity through an allosteric effect by the intracellular SO42- concentration of the roots, followed first by induction of carrier synthesis and then by repression of carrier synthesis after transfer of the roots from SO42--deficient nutrient solutions to solutions with SO42-. A Hill plot of the partly sigmoidal relationship between SO42- influx and intracellular sulfur concentration in the roots gave a Hill coefficient of -4.2, indicating negative cooperativity between a minimum number of four interacting allosteric binding sites for sulfur on each carrier entity. DNP-experiments showed that SO42- influx was mainly metabolic, especially after short pretreatment in SO42- at an external SO42- concentration of 0.1 mM. Pretreatment with CH rapidly prevented new SO42- carriers from being formed. Long CH pretreatment (24 h) and different SO42- pretreatments reduced SO42- influx below the non-metabolic level obtained by uptake experiments with DNP, indicating the existence of SO42- carriers mediating passive SO42- transport across the plasmalemma of the root cells. SO42- influx was further decreased for the CH pretreated (24 h) plants by the presence of both CH and DNP in the experimental nutrient solution. This probably indicates the diffusive part of the non-metabolic SO42- influx in the present experiments. Finally, it is suggested that there is a feedback signal between root and shoot, regulating sulfur transport upwards.  相似文献   
96.
97.
Vector pMPM‐A4Ω and vectors pQE‐30 and pET‐45b(+) containing the 6x His‐tag sequence were used for expression of Potato leafroll virus (PLRV) structural and non‐structural proteins in Escherichia coli. Coat protein (CP) and RNA‐dependent RNA polymerase (RdRp)–fragments RdRp43‐616 and RdRp304‐537 were chosen for expression. A high level of CP and RdRp304‐537 was obtained only in an expression system using pET‐45b(+) vector and E. coli Rosetta‐gami 2(DE3) cells. After purification, the His‐tagged PLRV proteins were used for immunization of rabbits.  相似文献   
98.
99.
100.
Regulation of gene expression on the level of translation and mRNA turnover is widely conserved evolutionarily. We have found that the main mRNA decay enzyme, exoribonuclease Xrn1, accumulates at the plasma membrane-associated eisosomes after glucose exhaustion in a culture of the yeast S. cerevisiae. Eisosomal localization of Xrn1 is not achieved in cells lacking the main component of eisosomes, Pil1, or Sur7, the protein accumulating at the membrane compartment of Can1 (MCC) - the eisosome-organized plasma membrane microdomain. In contrast to the conditions of diauxic shift, when Xrn1 accumulates in processing bodies (P-bodies), or acute heat stress, in which these cytosolic accumulations of Xrn1 associate with eIF3a/Rpg1-containing stress granules, Xrn1 is not accompanied by other mRNA-decay machinery components when it accumulates at eisosomes in post-diauxic cells. It is important that Xrn1 is released from eisosomes after addition of fermentable substrate. We suggest that this spatial segregation of Xrn1 from the rest of the mRNA-decay machinery reflects a general regulatory mechanism, in which the key enzyme is kept separate from the rest of mRNA decay factors in resting cells but ready for immediate use when fermentable nutrients emerge and appropriate metabolism reprogramming is required. In particular, the localization of Xrn1 to the eisosome, together with previously published data, accents the relevance of this plasma membrane-associated compartment as a multipotent regulatory site.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号