全文获取类型
收费全文 | 2460篇 |
免费 | 91篇 |
国内免费 | 2篇 |
专业分类
2553篇 |
出版年
2024年 | 15篇 |
2023年 | 14篇 |
2022年 | 31篇 |
2021年 | 50篇 |
2020年 | 45篇 |
2019年 | 51篇 |
2018年 | 54篇 |
2017年 | 44篇 |
2016年 | 76篇 |
2015年 | 104篇 |
2014年 | 89篇 |
2013年 | 163篇 |
2012年 | 175篇 |
2011年 | 201篇 |
2010年 | 132篇 |
2009年 | 114篇 |
2008年 | 157篇 |
2007年 | 162篇 |
2006年 | 137篇 |
2005年 | 138篇 |
2004年 | 120篇 |
2003年 | 94篇 |
2002年 | 104篇 |
2001年 | 18篇 |
2000年 | 14篇 |
1999年 | 18篇 |
1998年 | 19篇 |
1997年 | 20篇 |
1996年 | 9篇 |
1995年 | 9篇 |
1994年 | 9篇 |
1993年 | 16篇 |
1992年 | 9篇 |
1991年 | 6篇 |
1990年 | 14篇 |
1989年 | 10篇 |
1988年 | 6篇 |
1987年 | 10篇 |
1986年 | 7篇 |
1985年 | 9篇 |
1984年 | 6篇 |
1983年 | 4篇 |
1982年 | 9篇 |
1981年 | 8篇 |
1980年 | 5篇 |
1979年 | 8篇 |
1978年 | 9篇 |
1975年 | 6篇 |
1973年 | 8篇 |
1972年 | 3篇 |
排序方式: 共有2553条查询结果,搜索用时 29 毫秒
51.
52.
Rashpal S. Dhillon Yiming Qin Paul R. van Ginkel Vivian X. Fu James M. Vann Alexis J. Lawton Cara L. Green Fúlvia B. ManchadoGobatto Claudio A. Gobatto Dudley W. Lamming Tomas A. Prolla John M. Denu 《Aging cell》2022,21(12)
Mitochondrial NAD+‐dependent protein deacetylase Sirtuin3 (SIRT3) has been proposed to mediate calorie restriction (CR)‐dependent metabolic regulation and lifespan extension. Here, we investigated the role of SIRT3 in CR‐mediated longevity, mitochondrial function, and aerobic fitness. We report that SIRT3 is required for whole‐body aerobic capacity but is dispensable for CR‐dependent lifespan extension. Under CR, loss of SIRT3 (Sirt3 −/− ) yielded a longer overall and maximum lifespan as compared to Sirt3 +/+ mice. This unexpected lifespan extension was associated with altered mitochondrial protein acetylation in oxidative metabolic pathways, reduced mitochondrial respiration, and reduced aerobic exercise capacity. Also, Sirt3 −/− CR mice exhibit lower spontaneous activity and a trend favoring fatty acid oxidation during the postprandial period. This study shows the uncoupling of lifespan and healthspan parameters (aerobic fitness and spontaneous activity) and provides new insights into SIRT3 function in CR adaptation, fuel utilization, and aging. 相似文献
53.
Identification and characterization of putative virulence genes and gene clusters in Aeromonas hydrophila PPD134/91 总被引:1,自引:0,他引:1
Yu HB Zhang YL Lau YL Yao F Vilches S Merino S Tomas JM Howard SP Leung KY 《Applied and environmental microbiology》2005,71(8):4469-4477
Aeromonas hydrophila is a gram-negative opportunistic pathogen of animals and humans. The pathogenesis of A. hydrophila is multifactorial. Genomic subtraction and markers of genomic islands (GIs) were used to identify putative virulence genes in A. hydrophila PPD134/91. Two rounds of genomic subtraction led to the identification of 22 unique DNA fragments encoding 19 putative virulence factors and seven new open reading frames, which are commonly present in the eight virulence strains examined. In addition, four GIs were found, including O-antigen, capsule, phage-associated, and type III secretion system (TTSS) gene clusters. These putative virulence genes and gene clusters were positioned on a physical map of A. hydrophila PPD134/91 to determine their genetic organization in this bacterium. Further in vivo study of insertion and deletion mutants showed that the TTSS may be one of the important virulence factors in A. hydrophila pathogenesis. Furthermore, deletions of multiple virulence factors such as S-layer, serine protease, and metalloprotease also increased the 50% lethal dose to the same level as the TTSS mutation (about 1 log) in a blue gourami infection model. This observation sheds light on the multifactorial and concerted nature of pathogenicity in A. hydrophila. The large number of putative virulence genes identified in this study will form the basis for further investigation of this emerging pathogen and help to develop effective vaccines, diagnostics, and novel therapeutics. 相似文献
54.
55.
David C. Bartholomew Paulo R. L. Bittencourt Antonio C. L. da Costa Lindsay F. Banin Patrícia de Britto Costa Sarah I. Coughlin Tomas F. Domingues Leandro V. Ferreira André Giles Maurizio Mencuccini Lina Mercado Raquel C. Miatto Alex Oliveira Rafael Oliveira Patrick Meir Lucy Rowland 《Plant, cell & environment》2020,43(10):2380-2393
The response of small understory trees to long-term drought is vital in determining the future composition, carbon stocks and dynamics of tropical forests. Long-term drought is, however, also likely to expose understory trees to increased light availability driven by drought-induced mortality. Relatively little is known about the potential for understory trees to adjust their physiology to both decreasing water and increasing light availability. We analysed data on maximum photosynthetic capacity (Jmax, Vcmax), leaf respiration (Rleaf), leaf mass per area (LMA), leaf thickness and leaf nitrogen and phosphorus concentrations from 66 small trees across 12 common genera at the world's longest running tropical rainfall exclusion experiment and compared responses to those from 61 surviving canopy trees. Small trees increased Jmax, Vcmax, Rleaf and LMA (71, 29, 32, 15% respectively) in response to the drought treatment, but leaf thickness and leaf nutrient concentrations did not change. Small trees were significantly more responsive than large canopy trees to the drought treatment, suggesting greater phenotypic plasticity and resilience to prolonged drought, although differences among taxa were observed. Our results highlight that small tropical trees have greater capacity to respond to ecosystem level changes and have the potential to regenerate resilient forests following future droughts. 相似文献
56.
Dragana Dobrijevic Gaetana Di Liberto Kosei Tanaka Tomas de Wouters Rozenn Dervyn Samira Boudebbouze Johan Binesse Hervé M. Blottière Alexandre Jamet Emmanuelle Maguin Maarten van de Guchte 《PloS one》2013,8(6)
Complex microbial ecosystems are increasingly studied through the use of metagenomics approaches. Overwhelming amounts of DNA sequence data are generated to describe the ecosystems, and allow to search for correlations between gene occurrence and clinical (e.g. in studies of the gut microbiota), physico-chemical (e.g. in studies of soil or water environments), or other parameters. Observed correlations can then be used to formulate hypotheses concerning microbial gene functions in relation to the ecosystem studied. In this context, functional metagenomics studies aim to validate these hypotheses and to explore the mechanisms involved. One possible approach is to PCR amplify or chemically synthesize genes of interest and to express them in a suitable host in order to study their function. For bacterial genes, Escherichia coli is often used as the expression host but, depending on the origin and nature of the genes of interest and the test system used to evaluate their putative function, other expression systems may be preferable. In this study, we developed a system to evaluate the role of secreted and surface-exposed proteins from Gram-positive bacteria in the human gut microbiota in immune modulation. We chose to use a Gram-positive host bacterium, Bacillus subtilis, and modified it to provide an expression background that behaves neutral in a cell-based immune modulation assay, in vitro. We also adapted an E. coli – B. subtilis shuttle expression vector for use with the Gateway high-throughput cloning system. Finally, we demonstrate the functionality of this host-vector system through the cloning and expression of a flagellin-coding sequence, and show that the expression-clone elicits an inflammatory response in a human intestinal epithelial cell line. The expression host can easily be adapted to assure neutrality in other assay systems, allowing the use of the presented presentation system in functional metagenomics of the gut and other ecosystems. 相似文献
57.
Tomas E. van den Berg Rameez Arshad Wojciech J. Nawrocki Egbert J. Boekema Roman Kouil Roberta Croce 《Plant physiology》2020,184(4):2040
PSI is an essential component of the photosynthetic apparatus of oxygenic photosynthesis. While most of its subunits are conserved, recent data have shown that the arrangement of the light-harvesting complexes I (LHCIs) differs substantially in different organisms. Here we studied the PSI-LHCI supercomplex of Botryococccus braunii, a colonial green alga with potential for lipid and sugar production, using functional analysis and single-particle electron microscopy of the isolated PSI-LHCI supercomplexes complemented by time-resolved fluorescence spectroscopy in vivo. We established that the largest purified PSI-LHCI supercomplex contains 10 LHCIs (∼240 chlorophylls). However, electron microscopy showed heterogeneity in the particles and a total of 13 unique binding sites for the LHCIs around the PSI core. Time-resolved fluorescence spectroscopy indicated that the PSI antenna size in vivo is even larger than that of the purified complex. Based on the comparison of the known PSI structures, we propose that PSI in B. braunii can bind LHCIs at all known positions surrounding the core. This organization maximizes the antenna size while maintaining fast excitation energy transfer, and thus high trapping efficiency, within the complex.The multisubunit-pigment-protein complex PSI is an essential component of the electron transport chain in oxygenic photosynthetic organisms. It utilizes solar energy in the form of visible light to transfer electrons from plastocyanin to ferredoxin.PSI consists of a core complex composed of 12 to 14 proteins, which contains the reaction center (RC) and ∼100 chlorophylls (Chls), and a peripheral antenna system, which enlarges the absorption cross section of the core and differs in different organisms (Mazor et al., 2017; Iwai et al., 2018; Pi et al., 2018; Suga et al., 2019; for reviews, see Croce and van Amerongen, 2020; Suga and Shen, 2020). For the antenna system, cyanobacteria use water-soluble phycobilisomes; green algae, mosses, and plants use membrane-embedded light-harvesting complexes (LHCs); and red algae contain both phycobilisomes and LHCs (Busch and Hippler, 2011). In the core complex, PsaA and PsaB, the subunits that bind the RC Chls, are highly conserved, while the small subunits PsaK, PsaL, PsaM, PsaN, and PsaF have undergone substantial changes in their amino acid sequences during the evolution from cyanobacteria to vascular plants (Grotjohann and Fromme, 2013). The appearance of the core subunits PsaH and PsaG and the change of the PSI supramolecular organization from trimer/tetramer to monomer are associated with the evolution of LHCs in green algae and land plants (Busch and Hippler, 2011; Watanabe et al., 2014).A characteristic of the PSI complexes conserved through evolution is the presence of “red” forms, i.e. Chls that are lower in energy than the RC (Croce and van Amerongen, 2013). These forms extend the spectral range of PSI beyond that of PSII and contribute significantly to light harvesting in a dense canopy or algae mat, which is enriched in far-red light (Rivadossi et al., 1999). The red forms slow down the energy migration to the RC by introducing uphill transfer steps, but they have little effect on the PSI quantum efficiency, which remains ∼1 (Gobets et al., 2001; Jennings et al., 2003; Engelmann et al., 2006; Wientjes et al., 2011). In addition to their role in light-harvesting, the red forms were suggested to be important for photoprotection (Carbonera et al., 2005).Two types of LHCs can act as PSI antennae in green algae, mosses, and plants: (1) PSI-specific (e.g. LHCI; Croce et al., 2002; Mozzo et al., 2010), Lhcb9 in Physcomitrella patens (Iwai et al., 2018), and Tidi in Dunaliela salina (Varsano et al., 2006); and (2) promiscuous antennae (i.e. complexes that can serve both PSI and PSII; Kyle et al., 1983; Wientjes et al., 2013a; Drop et al., 2014; Pietrzykowska et al., 2014).PSI-specific antenna proteins vary in type and number between algae, mosses, and plants. For example, the genomes of several green algae contain a larger number of lhca genes than those of vascular plants (Neilson and Durnford, 2010). The PSI-LHCI complex of plants includes only four Lhcas (Lhca1–Lhc4), which are present in all conditions analyzed so far (Ballottari et al., 2007; Wientjes et al., 2009; Mazor et al., 2017), while in algae and mosses, 8 to 10 Lhcas bind to the PSI core (Drop et al., 2011; Iwai et al., 2018; Pinnola et al., 2018; Kubota-Kawai et al., 2019; Suga et al., 2019). Moreover, some PSI-specific antennae are either only expressed, or differently expressed, under certain environmental conditions (Moseley et al., 2002; Varsano et al., 2006; Swingley et al., 2010; Iwai and Yokono, 2017), contributing to the variability of the PSI antenna size in algae and mosses.The colonial green alga Botryococcus braunii (Trebouxiophyceae) is found worldwide throughout different climate zones and has been targeted for the production of hydrocarbons and sugars (Metzger and Largeau, 2005; Eroglu et al., 2011; Tasić et al., 2016). Here, we have purified and characterized PSI from an industrially relevant strain isolated from a mountain lake in Portugal (Gouveia et al., 2017). This B. braunii strain forms colonies, and since the light intensity inside the colony is low, it is expected that PSI in this strain has a large antenna size (van den Berg et al., 2019). We provide evidence that B. braunii PSI differs from that of closely related organisms through the particular organization of its antenna. The structural and functional characterization of B. braunii PSI highlights a large flexibility of PSI and its antennae throughout the green lineage. 相似文献
58.
Cantanhede AM Da Silva VM Farias IP Hrbek T Lazzarini SM Alves-Gomes J 《Molecular ecology》2005,14(2):401-413
We used mitochondrial DNA control region sequences to examine phylogeography and population differentiation of the endangered Amazonian manatee Trichechus inunguis. We observe lack of molecular differentiation among localities and we find weak association between geographical and genetic distances. However, nested clade analysis supports restricted gene flow and/or dispersal with some long-distance dispersal. Although this species has a history of extensive hunting, genetic diversity and effective population sizes are relatively high when compared to the West Indian manatee Trichechus manatus. Patterns of mtDNA haplotype diversity in T. inunguis suggest a genetic disequilibrium most likely explained by demographic expansion resulting from secession of hunting and enforcement of conservation and protective measures. Phylogenetic analysis of T. manatus and T. inunguis haplotypes suggests that T. inunguis is nested within T. manatus, effectively making T. manatus a paraphyletic entity. Paraphyly of T. manatus and recent divergence times of T. inunguis and the three main T. manatus lineages suggest a possible need for a taxonomic re-evaluation of the western Atlantic Trichechus. 相似文献
59.
Bram Knegt Tomas T. Meijer Merijn R. Kant E. Toby Kiers Martijn Egas 《Ecology and evolution》2020,10(10):4375-4390
Plant defense suppression is an offensive strategy of herbivores, in which they manipulate plant physiological processes to increase their performance. Paradoxically, defense suppression does not always benefit the defense‐suppressing herbivores, because lowered plant defenses can also enhance the performance of competing herbivores and can expose herbivores to increased predation. Suppression of plant defense may therefore entail considerable ecological costs depending on the presence of competitors and natural enemies in a community. Hence, we hypothesize that the optimal magnitude of suppression differs among locations. To investigate this, we studied defense suppression across populations of Tetranychus evansi spider mites, a herbivore from South America that is an invasive pest of solanaceous plants including cultivated tomato, Solanum lycopersicum, in other parts of the world. We measured the level of expression of defense marker genes in tomato plants after infestation with mites from eleven different T. evansi populations. These populations were chosen across a range of native (South American) and non‐native (other continents) environments and from different host plant species. We found significant variation at three out of four defense marker genes, demonstrating that T. evansi populations suppress jasmonic acid‐ and salicylic acid‐dependent plant signaling pathways to varying degrees. While we found no indication that this variation in defense suppression was explained by differences in host plant species, invasive populations tended to suppress plant defense to a smaller extent than native populations. This may reflect either the genetic lineage of T. evansi—as all invasive populations we studied belong to one linage and both native populations to another—or the absence of specialized natural enemies in invasive T. evansi populations. 相似文献
60.
Oscar Ramirez I?igo Olalde Jonas Berglund Belen Lorente-Galdos Jessica Hernandez-Rodriguez Javier Quilez Matthew T Webster Robert K Wayne Carles Lalueza-Fox Carles Vilà Tomas Marques-Bonet 《BMC genomics》2014,15(1)