首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2254篇
  免费   165篇
  国内免费   2篇
  2421篇
  2023年   11篇
  2022年   26篇
  2021年   47篇
  2020年   42篇
  2019年   47篇
  2018年   54篇
  2017年   42篇
  2016年   68篇
  2015年   100篇
  2014年   82篇
  2013年   161篇
  2012年   170篇
  2011年   201篇
  2010年   128篇
  2009年   110篇
  2008年   151篇
  2007年   158篇
  2006年   133篇
  2005年   131篇
  2004年   117篇
  2003年   91篇
  2002年   98篇
  2001年   12篇
  2000年   11篇
  1999年   12篇
  1998年   17篇
  1997年   18篇
  1996年   8篇
  1995年   7篇
  1994年   8篇
  1993年   16篇
  1992年   9篇
  1991年   5篇
  1990年   12篇
  1989年   9篇
  1988年   5篇
  1987年   10篇
  1986年   7篇
  1985年   8篇
  1984年   6篇
  1983年   4篇
  1982年   9篇
  1981年   8篇
  1980年   5篇
  1979年   6篇
  1978年   9篇
  1975年   6篇
  1974年   3篇
  1973年   8篇
  1972年   3篇
排序方式: 共有2421条查询结果,搜索用时 10 毫秒
171.
172.
Maintenance of genetic and phenotypic diversity is widely recognized as an important conservation priority, yet managers often lack basic information about spatial patterns of population structure and its relationship with habitat heterogeneity and species movement within it. To address this knowledge gap, we focused on the economically and ecologically prominent yellow perch (Perca flavescens). In the Lake Michigan basin, yellow perch reside in nearshore Lake Michigan, including drowned river mouths (DRMs)—protected, lake‐like habitats that link tributaries to Lake Michigan. The goal of this study was to examine the extent that population structure is associated with Great Lakes connected habitats (i.e., DRMs) in a mobile fish species using yellow perch as a model. Specifically, we tested whether DRMs and eastern Lake Michigan constitute distinct genetic stocks of yellow perch, and if so, whether those stocks migrate between the two connected habitats throughout the year. To do so, we genotyped yellow perch at 14 microsatellite loci collected from 10 DRMs in both deep and littoral habitats during spring, summer, and autumn and two nearshore sites in Lake Michigan (spring and autumn) during 2015–2016 and supplemented our sampling with fish collected in 2013. We found that yellow perch from littoral‐DRM habitats were genetically distinct from fish captured in nearshore Lake Michigan. Our data also suggested that Lake Michigan yellow perch likely use deep‐DRM habitats during autumn. Further, we found genetic structuring among DRMs. These patterns support hypotheses of fishery managers that yellow perch seasonally migrate to and from Lake Michigan, yet, interestingly, these fish do not appear to interbreed with littoral fish despite occupying the same DRM. We recommend that fisheries managers account for this complex population structure and movement when setting fishing regulations and assessing the effects of harvest in Lake Michigan.  相似文献   
173.
Obesity and hypertension are increasing medical problems in adolescents. Serotonin transporter (5-HTT) is involved in mood and eating disturbances. Encoded by the gene SLC6A4, the promoter shows functional insertion/deletion alleles: long (L) and short (S). Because individuals who are carriers for the short version are known to be at risk for higher levels of anxiety, we hypothesized that this variant may be associated with overweight. Data and blood samples were collected from 172 adolescents out of a cross-sectional, population-based study of 934 high school students. To replicate the findings, we also included 119 outpatients from the Nutrition and Diabetes Section of the Children's County Hospital. We found that the S allele was associated with overweight (BMI > 85th percentile), being a risk factor for overweight independently of sex, age, and hypertension [odds ratio (OR): 1.85; 95% confidence interval (CI): 1.13, 3.05; p < 0.02]. Additionally, in the outpatient study, compared with the homozygous LL subjects, S allele carriers showed a higher BMI z-score (1.47 +/- 1.09 vs. 0.51 +/- 1.4; p < 0.002) and were more frequent in overweight children. In conclusion, the S allele of the SLC6A4 promoter variant is associated with overweight being an independent genetic risk factor for obesity.  相似文献   
174.
A convenient technology to quantify three-dimensional (3D) morphological features would have widespread applications in biomedical research. Based on combined improvements in sample preparation, tomographic imaging and computational processing, we present a procedure for high-resolution 3D quantification of structures within intact adult mouse organs. Using the nonobese diabetic (NOD) mouse model, we demonstrate a correlation between total islet beta-cell volume and the onset of type-1 diabetes.  相似文献   
175.
176.
177.
Enzyme prodrug therapy using neural progenitor cells (NPCs) as delivery vehicles has been applied in animal models of gliomas and relies on gap junction communication (GJC) between delivery and target cells. This study investigated the effects of histone deacetylase (HDAC) inhibitors on GJC for the purpose of facilitating transfer of therapeutic molecules from recombinant NPCs. We studied a novel immortalized midbrain cell line, NGC-407 of embryonic human origin having neural precursor characteristics, as a potential delivery vehicle. The expression of gap junction protein connexin 43 (Cx43) was analyzed by western blot and immunocytochemistry. While Cx43 levels were decreased in untreated differentiating NGC-407 cells, the HDAC inhibitor 4-phenylbutyrate (4-PB) increased Cx43 expression along with increased membranous deposition in both proliferating and differentiating cells. Simultaneously, Ser 279/282-phosphorylated form of Cx43 was declined in both culture conditions by 4-PB. The 4-PB effect in NGC-407 cells was verified by using HNSC.100 human neural progenitors and Trichostatin A. Improved functional GJC is of imperative importance for therapeutic strategies involving intercellular transport of low molecular-weight compounds. We show here an enhancement by 4-PB, of the functional GJC among NGC-407 cells, as well as between NGC-407 and human glioma cells, as indicated by increased fluorescent dye transfer.  相似文献   
178.
One approach to understanding processes that underlie skilled performing has been to study electrical brain activity using electroencephalography (EEG). A notorious problem with EEG is that genuine cerebral data is often contaminated by artifacts of non-cerebral origin. Unfortunately, such artifacts tend to be exacerbated when the subject is in motion, meaning that obtaining reliable data during exercise is inherently problematic. These problems may explain the limited number of studies using EEG as a methodological tool in the sports sciences. This paper discusses how empirical studies have generally tackled the problem of movement artifact by adopting alternative paradigms which avoid recording during actual physical exertion. Moreover, the specific challenges that motion presents to obtaining reliable EEG data are discussed along with practical and computational techniques to confront these challenges. Finally, as EEG recording in sports is often underpinned by a desire to optimise performance, a brief review of EEG-biofeedback and peak performance studies is also presented. A knowledge of practical aspects of EEG recording along with the advent of new technology and increasingly sophisticated processing models offer a promising approach to minimising, if perhaps not entirely circumventing, the problem of obtaining reliable EEG data during motion.  相似文献   
179.
Noroviruses from mussels collected near sewage effluents were compared with local patient outbreak strains. Sequence analyses of RNA polymerase-capsid-poly(A)-3' (3.1-kilobase) regions confirmed the 99.9% similarity between genotype I.1 strains from mussels and patient strains from recreational-bathing outbreaks, indicating the potential usefulness of sentinel norovirus mussel studies in tracing human norovirus contamination of coastal waters.  相似文献   
180.
By adapting OPT to include the capability of imaging in the near infrared (NIR) spectrum, we here illustrate the possibility to image larger bodies of pancreatic tissue, such as the rat pancreas, and to increase the number of channels (cell types) that may be studied in a single specimen. We further describe the implementation of a number of computational tools that provide: 1/ accurate positioning of a specimen''s (in our case the pancreas) centre of mass (COM) at the axis of rotation (AR)2; 2/ improved algorithms for post-alignment tuning which prevents geometric distortions during the tomographic reconstruction2 and 3/ a protocol for intensity equalization to increase signal to noise ratios in OPT-based BCM determinations3. In addition, we describe a sample holder that minimizes the risk for unintentional movements of the specimen during image acquisition. Together, these protocols enable assessments of BCM distribution and other features, to be performed throughout the volume of intact pancreata or other organs (e.g. in studies of islet transplantation), with a resolution down to the level of individual islets of Langerhans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号