首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2847篇
  免费   215篇
  国内免费   2篇
  3064篇
  2023年   19篇
  2022年   43篇
  2021年   80篇
  2020年   54篇
  2019年   60篇
  2018年   87篇
  2017年   83篇
  2016年   112篇
  2015年   127篇
  2014年   155篇
  2013年   207篇
  2012年   217篇
  2011年   234篇
  2010年   168篇
  2009年   132篇
  2008年   168篇
  2007年   189篇
  2006年   186篇
  2005年   125篇
  2004年   125篇
  2003年   103篇
  2002年   106篇
  2001年   29篇
  2000年   16篇
  1999年   24篇
  1998年   26篇
  1997年   15篇
  1996年   17篇
  1995年   8篇
  1994年   8篇
  1993年   9篇
  1992年   9篇
  1991年   7篇
  1990年   9篇
  1989年   6篇
  1988年   5篇
  1987年   4篇
  1986年   6篇
  1985年   8篇
  1984年   3篇
  1983年   8篇
  1982年   9篇
  1981年   8篇
  1980年   7篇
  1979年   5篇
  1975年   5篇
  1974年   3篇
  1973年   3篇
  1969年   3篇
  1967年   3篇
排序方式: 共有3064条查询结果,搜索用时 15 毫秒
51.
We explored the fine-scale distribution of cytotypes of the mountain plant Senecio carniolicus along an altitudinal transect in the Eastern Alps. Cytotypes showed a statistically significant altitudinal segregation with diploids exclusively found in the upper part of the transect, whereas diploids and hexaploids co-occurred in the lower range. Analysis of accompanying plant assemblages revealed significant differences between cytotypes along the entire transect but not within the lower part only, where both cytotypes co-occur. This suggests the presence of ecological differentiation between cytotypes with the diploid possessing the broader ecological niche. No tetraploids were detected, indicating the presence of strong crossing barriers. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
52.
Breast cancer is a very heterogeneous disease, encompassing several intrinsic subtypes with various morphological and molecular features, natural history and response to therapy. Currently, molecular targeted therapies are available for estrogen receptor (ER) and human epidermal growth factor receptor 2 (Her2)-positive breast tumors. However, a significant proportion of primary breast cancers are negative for ER, progesterone receptor (PgR), and Her2, comprising the triple negative breast cancer (TNBC) group. Women with TNBC have a poor prognosis because of the aggressive nature of these tumors and current lack of suitable targeted therapies. As a consequence, the identification of novel relevant protein targets for this group of patients is of great importance. Using a systematic two dimensional (2D) gel-based proteomic profiling strategy, applied to the analysis of fresh TNBC tissue biopsies, in combination with a three-tier orthogonal technology (two dimensional PAGE/silver staining coupled with MS, two dimensional Western blotting, and immunohistochemistry) approach, we aimed to identify targetable protein markers that were present in a significant fraction of samples and that could define therapy-amenable sub-groups of TNBCs. We present here our results, including a large cumulative database of proteins based on the analysis of 78 TNBCs, and the identification and validation of one specific protein, Mage-A4, which was expressed in a significant fraction of TNBC and Her2-positive/ER negative lesions. The high level expression of Mage-A4 in the tumors studied allowed the detection of the protein in the tumor interstitial fluids as well as in sera. The existence of immunotherapeutics approaches specifically targeting this protein, or Mage-A protein family members, and the fact that we were able to detect its presence in serum suggest novel management options for TNBC and human epidermal growth factor receptor 2 positive/estrogen receptor negative patients bearing Mage-A4 positive tumors.Breast cancer, although a very heterogeneous disease, can be divided into three therapeutically relevant fundamental disease entities, simply based on estrogen receptor (ER) and human epidermal growth factor receptor 2 (Her2)1 status (i.e. ER+ and/or Her2+, and ERHer2), as the major currently available breast cancer therapeutic options are based on the ability to target these proteins. Hormone receptor positive and hormone receptor negative breast cancers are disease entities with distinct morphological, genetic and biological behavior (1). Hormone receptor negative tumors, which constitute ∼30% of primary breast cancers, tend to be high-grade, more frequently BRCA1 and TP53 mutated, and, more importantly, are not amenable to endocrine therapy. Her2 is amplified in ∼18–20% of breast cancers, and is more frequently observed in hormone receptor negative tumors. Her2 amplification is associated with worse prognosis (higher rate of recurrence and mortality) in patients with newly diagnosed breast cancer who do not receive any adjuvant systemic therapy. Her2 status is also predictive for several systemic therapies, particularly for agents that target Her2. The development of a humanized monoclonal antibody against Her2 (trastuzumab) has resulted in reduction of the risk of recurrence and mortality in patients with Her2 amplification (2, 3). Although trastuzumab is considered one of the most effective targeted therapies currently available in oncology, a significant number of patients with Her2-overexpressing breast cancer do not benefit from it (4, 5).Breast tumors that do not express ER, PgR, or Her2 (ER PgR Her2), as determined by immunohistochemistry (IHC), are generally referred to as triple negative breast cancers (TNBCs), and they are not candidates for targeted therapies (endocrine therapy or trastuzumab). Although TNBCs account for a relatively small proportion of breast cancer cases (10–15%), they are responsible for a disproportionate number of breast cancer deaths. TNBC tumors form a recognizable prognostic group of breast cancer with aggressive behavior that currently lacks the benefit of available systemic therapy (68). Given the need to develop molecular criteria to reproducibly categorize molecular breast tumor subtypes at the protein level and the lack of targeted therapies available to treat patients bearing TNBCs, we have implemented a systematic proteomics approach to identify, characterize, and evaluate proteins present in triple-negative tumors that could constitute an appropriate therapeutic target for the clinical management of this group of patients. To this end, based on the analysis of 78 individual TNBC samples, we have established a large, cumulative, 2D-PAGE database of proteins expressed by TNBCs, including some that could be of potential therapeutic value. Comparison of this TNBC protein database with protein databases of other breast cancer subtypes previously established by our laboratory allowed us to single out a number of proteins preferentially expressed in TNBCs for which targeted therapeutics exist. In this report we further focused on the characterization of one such target, the cancer/testis antigen, melanoma-associated antigen 4 - Mage-A4.Cancer/testis antigens (CTAs) are expressed in a large variety of tumor types, whereas their expression in normal tissues is restricted to male germ cells, which are immune-privileged because of their lack of or low expression of human leukocyte antigen (HLA) molecules (9). Several studies have shown the existence of natural cellular and humoral responses against some CTAs, indicating that they are appropriate targets for vaccine-based cancer immunotherapy (1012). So far, the use of CTAs in immunotherapeutic approaches to cancer treatment has been tested in more than 60 early phase clinical trials, with varying success, and a few candidate products have reached late-stage clinical trials. One such candidate vaccine, Astuprotimut-R (GSK-249553), a Mage-A3 antigen-specific cancer immunotherapeutic agent, is currently under clinical evaluation by GlaxoSmithKline in the largest-ever treatment trial in lung cancer, called MAGRIT (Mage-A3 as Adjuvant nonsmall cell lunG canceR ImmunoTherapy) (13).At present, CTAs comprise about 150 members, more than half of which are encoded by large, recently expanded families on chromosome X (14; see also CTDatabase at www.cta.lncc.br; last accessed 01.09.2012). These genes are organized into clusters and have undergone rapid evolution, possibly because of positive selection. The biological functions of CTAs are not fully understood, but emerging evidence suggest that they direct the proliferation, differentiation, and survival of human germ line cells and may have similar effect in cancer cells. Mage-A4 protein belongs to the Mage-A family of CT antigens. The Mage-A family is composed by 12 proteins (14, 15) and many members of the Mage-A family of CTAs have been associated with cancer, including breast cancer (14, 16, 17). However, past studies reported mostly on MAGE genes rather than protein expression, or on the expression of Mage protein families and not on any given specific protein.In this paper we describe the identification of Mage-A4 in breast tumor biopsies using 2D PAGE coupled with MS proteomics, and follow the protein localization from the tumor cells, to the tumor microenvironment, and to the serum of a patient. Using a three-tier orthogonal technology approach that combined 2D PAGE silver staining coupled with MS, with 2D Western blotting, and IHC, we showed that high level Mage-A4 expression in breast tumors occurs almost exclusively in the receptor negative disease (TNBC and Her2+ERPgR). The existence of immunotherapeutic approaches targeting MAGE protein family members (Mage-A4 specific or with broader specificity) and the fact that we were able to detect its presence in serum suggest novel management options for patients bearing Mage-A4 positive TNBCs and Her2+ERPgR tumors.  相似文献   
53.
Overproduction of reactive oxygen species (ROS) has been implicated in a range of pathologies. Mitochondrial flavin dehydrogenases glycerol-3-phosphate dehydrogenase (mGPDH) and succinate dehydrogenase (SDH) represent important ROS source, but the mechanism of electron leak is still poorly understood. To investigate the ROS production by the isolated dehydrogenases, we used brown adipose tissue mitochondria solubilized by digitonin as a model. Enzyme activity measurements and hydrogen peroxide production studies by Amplex Red fluorescence, and luminol luminescence in combination with oxygraphy revealed flavin as the most likely source of electron leak in SDH under in vivo conditions, while we propose coenzyme Q as the site of ROS production in the case of mGPDH. Distinct mechanism of ROS production by the two dehydrogenases is also apparent from induction of ROS generation by ferricyanide which is unique for mGPDH. Furthermore, using native electrophoretic systems, we demonstrated that mGPDH associates into homooligomers as well as high molecular weight supercomplexes, which represent native forms of mGPDH in the membrane. By this approach, we also directly demonstrated that isolated mGPDH itself as well as its supramolecular assemblies are all capable of ROS production.  相似文献   
54.
Propofol acts as a positive allosteric modulator of γ-aminobutyric acid type A receptors (GABAARs), an interaction necessary for its anesthetic potency in vivo as a general anesthetic. Identifying the location of propofol-binding sites is necessary to understand its mechanism of GABAAR modulation. [3H]2-(3-Methyl-3H-diaziren-3-yl)ethyl 1-(phenylethyl)-1H-imidazole-5-carboxylate (azietomidate) and R-[3H]5-allyl-1-methyl-5-(m-trifluoromethyl-diazirynylphenyl)barbituric acid (mTFD-MPAB), photoreactive analogs of 2-ethyl 1-(phenylethyl)-1H-imidazole-5-carboxylate (etomidate) and mephobarbital, respectively, have identified two homologous but pharmacologically distinct classes of intersubunit-binding sites for general anesthetics in the GABAAR transmembrane domain. Here, we use a photoreactive analog of propofol (2-isopropyl-5-[3-(trifluoromethyl)-3H-diazirin-3-yl]phenol ([3H]AziPm)) to identify propofol-binding sites in heterologously expressed human α1β3 GABAARs. Propofol, AziPm, etomidate, and R-mTFD-MPAB each inhibited [3H]AziPm photoincorporation into GABAAR subunits maximally by ∼50%. When the amino acids photolabeled by [3H]AziPm were identified by protein microsequencing, we found propofol-inhibitable photolabeling of amino acids in the β3-α1 subunit interface (β3Met-286 in β3M3 and α1Met-236 in α1M1), previously photolabeled by [3H]azietomidate, and α1Ile-239, located one helical turn below α1Met-236. There was also propofol-inhibitable [3H]AziPm photolabeling of β3Met-227 in βM1, the amino acid in the α1-β3 subunit interface photolabeled by R-[3H]mTFD-MPAB. The propofol-inhibitable [3H]AziPm photolabeling in the GABAAR β3 subunit in conjunction with the concentration dependence of inhibition of that photolabeling by etomidate or R-mTFD-MPAB also establish that each anesthetic binds to the homologous site at the β3-β3 subunit interface. These results establish that AziPm as well as propofol bind to the homologous intersubunit sites in the GABAAR transmembrane domain that binds etomidate or R-mTFD-MPAB with high affinity.  相似文献   
55.
Low-density lipoproteins (LDLs), when modified by free radicals derived from artery wall cells, induce atherosclerosis. In contrast to oxidized LDL (ox-LDL), high-density lipoproteins (HDLs) are able to prevent atherosclerosis through a protein with antioxidant properties, paraoxonase 1 (PON1). The purpose of this study was to explore the association between the activity of HDL-associated PON1 and circulating ox-LDL as well as to investigate the relationship between ox-LDL and parameters of lipid profile in thirty Slovaks aged 21-73 years because recent studies have presented controversial results concerning PON1 and its role in LDL oxidation. For determination of circulating ox-LDL sandwich ELISA was used and other lipid parameters were determined by routine laboratory analyses. PON1 activities were assayed by two synthetic substrates - paraoxon and phenyl acetate. Lipid peroxides were determined spectrophotometrically. Of the lipid parameters examined, ox-LDL level correlated positively with total (P < 0.0001) and LDL-cholesterol (P < 0.001). Triacylglycerols (TAG) (P < 0.001), lipid peroxides (P < 0.01) and atherogenic index (AI = total cholesterol/HDL) (P < 0.0001) were also strongly correlated with ox-LDL. No inverse relationships were observed between ox-LDL and HDL-cholesterol or arylesterase/paraoxonase activities of PON1. Furthermore, it was found that ox-LDL (P < 0.01) and lipid peroxides (P < 0.05) were significantly higher in men than in women. PON1 arylesterase activity was marginally affected by sex. The results of this study suggest that the anti-atherogenic properties of HDLs are not directly related to their total concentration and that PON1 activity determined towards synthetic compounds (paraoxon and phenyl acetate) reflects no association with markers of oxidative stress. Furthermore, it follows from our results that men are more susceptible to developing atherosclerosis compared to women.  相似文献   
56.
Insight into the aberrant expression of microRNAs (miRNAs) and the genes that they regulate during the progression of cancer in general and prostate cancer (PCa) in particular is one of the most important issues in current molecular biomedicine and allows for the discovery of therapeutic or diagnostic miRNA targets. The present study aimed to analyze the available data regarding the direct or indirect effects of miRNAs on the expression of the mRNAs involved in carcinogenesis and to enable updating and optimizing the selection of the corresponding targets. The present review focuses on the data related to the genes with miRNA‐dependent expression during the development of PCa. The data used in this review have been extracted from research papers and the databases STRING, PANTHER and TargetScan, with a special focus on the genes directly associated with cell transformation and the maintenance of the transformed genotype, as well as tumor invasion and spread. The search for miRNA markers of PCa and therapeutically active molecules should rely on bioinformatics resources, such as data from recent experimental studies, as well as meta‐analysis and cross‐analysis of the data on the state of the tumor, patient status, histological/immunohistological data and data on mRNA–miRNA coexpression.  相似文献   
57.
We present here a general system for the coordination attachment of therapeutic proteins to a drug delivery system and its application in combined therapy. Proof of concept is demonstrated by the synthesis and testing of the targeted drug delivery system for cytostatics, which is based on a combination of the drug carrier Zn-porphyrin-cyclodextrin conjugates and their supramolecular coordination complexes with immunoglobulins. This system can be as readily used for a variety of therapeutic and targeting proteins including PAs, MAs, lectins, and HSA. Moreover, it allows combined photodynamic therapy, cell targeted chemotherapy and immunotherapy. When tested in a mouse model with human C32 carcinoma, the therapeutic superiority of the coordination assembly nanosystem was shown in comparison with the efficacy of building blocks used for the construction of the system.  相似文献   
58.
Activity-driven delivery of AMPA receptors is proposed to mediate glutamatergic synaptic plasticity, both during development and learning. In hippocampal CA1 principal neurons, such trafficking is primarily mediated by the abundant GluR-A subunit. We now report a study of GluR-B(long), a C-terminal splice variant of the GluR-B subunit. GluR-B(long) synaptic delivery is regulated by two forms of activity. Spontaneous synaptic activity-driven GluR-B(long) transport maintains one-third of the steady-state AMPA receptor-mediated responses, while GluR-B(long) delivery following the induction of LTP is responsible for approximately 50% of the resulting potentiation at the hippocampal CA3 to CA1 synapses at the time of GluR-B(long) peak expression-the second postnatal week. Trafficking of GluR-B(long)-containing receptors thus mediates a GluR-A-independent form of glutamatergic synaptic plasticity in the juvenile hippocampus.  相似文献   
59.
Although the evolutionary drivers of genome size change are known, the general patterns and mechanisms of plant genome size evolution are yet to be established. Here we aim to assess the relative importance of proliferation of repetitive DNA, chromosomal variation (including polyploidy), and the type of endoreplication for genome size evolution of the Pleurothallidinae, the most species-rich orchid lineage. Phylogenetic relationships between 341 Pleurothallidinae representatives were refined using a target enrichment hybrid capture combined with high-throughput sequencing approach. Genome size and the type of endoreplication were assessed using flow cytometry supplemented with karyological analysis and low-coverage Illumina sequencing for repeatome analysis on a subset of samples. Data were analyzed using phylogeny-based models. Genome size diversity (0.2–5.1 Gbp) was mostly independent of profound chromosome count variation (2n = 12–90) but tightly linked with the overall content of repetitive DNA elements. Species with partial endoreplication (PE) had significantly greater genome sizes, and genomic repeat content was tightly correlated with the size of the non-endoreplicated part of the genome. In PE species, repetitive DNA is preferentially accumulated in the non-endoreplicated parts of their genomes. Our results demonstrate that proliferation of repetitive DNA elements and PE together shape the patterns of genome size diversity in orchids.  相似文献   
60.

Background

Keratins 8 and 18 (K8/K18) are intermediate filament proteins that protect the liver from various forms of injury. Exonic K8/K18 variants associate with adverse outcome in acute liver failure and with liver fibrosis progression in patients with chronic hepatitis C infection or primary biliary cirrhosis. Given the association of K8/K18 variants with end-stage liver disease and progression in several chronic liver disorders, we studied the importance of keratin variants in patients with hemochromatosis.

Methods

The entire K8/K18 exonic regions were analyzed in 162 hemochromatosis patients carrying homozygous C282Y HFE (hemochromatosis gene) mutations. 234 liver-healthy subjects were used as controls. Exonic regions were PCR-amplified and analyzed using denaturing high-performance liquid chromatography and DNA sequencing. Previously-generated transgenic mice overexpressing K8 G62C were studied for their susceptibility to iron overload. Susceptibility to iron toxicity of primary hepatocytes that express K8 wild-type and G62C was also assessed.

Results

We identified amino-acid-altering keratin heterozygous variants in 10 of 162 hemochromatosis patients (6.2%) and non-coding heterozygous variants in 6 additional patients (3.7%). Two novel K8 variants (Q169E/R275W) were found. K8 R341H was the most common amino-acid altering variant (4 patients), and exclusively associated with an intronic KRT8 IVS7+10delC deletion. Intronic, but not amino-acid-altering variants associated with the development of liver fibrosis. In mice, or ex vivo, the K8 G62C variant did not affect iron-accumulation in response to iron-rich diet or the extent of iron-induced hepatocellular injury.

Conclusion

In patients with hemochromatosis, intronic but not exonic K8/K18 variants associate with liver fibrosis development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号