首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   368篇
  免费   20篇
  2023年   1篇
  2022年   4篇
  2021年   11篇
  2020年   4篇
  2019年   9篇
  2018年   4篇
  2017年   6篇
  2016年   12篇
  2015年   18篇
  2014年   22篇
  2013年   27篇
  2012年   29篇
  2011年   37篇
  2010年   20篇
  2009年   13篇
  2008年   20篇
  2007年   18篇
  2006年   25篇
  2005年   18篇
  2004年   18篇
  2003年   24篇
  2002年   7篇
  2001年   2篇
  2000年   4篇
  1999年   1篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1992年   3篇
  1991年   4篇
  1990年   4篇
  1989年   2篇
  1988年   3篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1977年   1篇
  1974年   1篇
排序方式: 共有388条查询结果,搜索用时 46 毫秒
301.
Two cDNA clones coding for α-type carbonic anhydrases (CA; EC 4.2.1.1) in the nitrogen-fixing nodules of the model legume Lotus japonicus were identified. Functionality of the full-length proteins was confirmed by heterologous expression in Escherichia coli and purification of the encoded polypeptides. The developmental expression pattern of LjCAA1 and LjCAA2 revealed that both genes code for nodule enhanced carbonic anhydrase isoforms, which are induced early during nodule development. The genes were slightly to moderately down-regulated in ineffective nodules formed by mutant Mesorhizobium loti strains, indicating that these genes may also be involved in biochemical and physiological processes not directly linked to nitrogen fixation/assimilation. The spatial expression profiling revealed that both genes were expressed in nodule inner cortical cells, vascular bundles and central tissue. These results are discussed in the context of the possible roles of CA in nodule carbon dioxide (CO(2)) metabolism.  相似文献   
302.
The umbilical cord is vulnerable to a number of insults that may alter cord morphology, diminish cord flow, and ultimately compromise fetal nutrition. Thus, an investigation of the underlying mechanisms of the development of cord morphology and possible pathologies associated with it may provide insight regarding fetal growth in the intrauterine environment and have an impact on later development of the child. To our knowledge, this study, which included 11,980 twins, is the first to report the relative contribution of genes and environment in the development of the cord. Umbilical cord length, insertion, knots, twisting, and number of vessels were examined by trained midwives at birth. Means and percentages of cord characteristics by twin zygosity/chorionicity and gender were calculated. ANOVA and chi-square tests were performed to calculate discordance in cord morphology between dizygotic (DZ), monozygotic monochorionic (MZMC), and monozygotic dichorionic (MZDC) twins. Univariate genetic models were fit to the umbilical cord characteristics to investigate the genetic and environmental influences on umbilical cord morphology. Mainly nonshared environmental but also genetic factors influence umbilical cord morphology. In MZMC male and female twins, a peripheral/marginal cord insertion was significantly (P < 0.01) more prevalent compared to MZDC and DZ male and female twins, respectively. In MZMC male twins, clockwise twisting was significantly (P = 0.02) less frequent compared to DZ twins. Environmental and genetic factors influence cord morphology and pathology. Twin members can experience environmental influences that are not shared between them even in that very early stage of in utero life.  相似文献   
303.
Both L-α-lysophosphatidylinositol (LPI) and 2-arachidonoyl-sn-glycero-3-phosphoinositol (2-AGPI) have been reported to activate the putative cannabinoid receptor, GPR55. Recent microsecond time-scale molecular dynamics (MD) simulations and isothiocyanate covalent labeling studies have suggested that a transmembrane helix 6/7 (TMH6/7) lipid pathway for ligand entry may be necessary for interaction with cannabinoid receptors. Because LPI and 2-AGPI are lipid-derived ligands, conformations that each assumes in the lipid bilayer are therefore likely important for their interaction with GPR55. We report here the results of 70 ns NAMD molecular dynamics (MD) simulations of LPI and of 2-AGPI in a fully hydrated bilayer of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). These simulations are compared with a 70 ns simulation of the cannabinoid CB1 receptor endogenous ligand, N-arachidonoylethanolamine (anandamide, AEA) in a POPC bilayer. These simulations revealed that (1) LPI and 2-AGPI sit much higher in the bilayer than AEA, with inositol headgroups that can at times be solvated completely by water; (2) the behavior of the acyl chains of AEA and 2-AGPI are similar in their flexibilities in the bilayer, while the acyl chain of LPI has reduced flexibility; and (3) both 2-AGPI and LPI can adopt a tilted headgroup orientation by hydrogen bonding to the phospholipid phosphate/glycerol groups or via intramolecular hydrogen bonding. This tilted head group conformation (which represents over 40% of the conformer population of LPI (42.2 ± 3.3%) and 2-AGPI (43.7 ± 1.4%)) may provide a low enough profile in the lipid bilayer for LPI and 2-AGPI to enter GPR55 via the putative TMH6/7 entry port.  相似文献   
304.
Triadin (Tdn) and Junctin (Jct) are structurally related transmembrane proteins thought to be key mediators of structural and functional interactions between calsequestrin (CASQ) and ryanodine receptor (RyRs) at the junctional sarcoplasmic reticulum (jSR). However, the specific contribution of each protein to the jSR architecture and to excitation-contraction (e-c) coupling has not been fully established. Here, using mouse models lacking either Tdn (Tdn-null), Jct (Jct-null) or both (Tdn/Jct-null), we identify Tdn as the main component of periodically located anchors connecting CASQ to the RyR-bearing jSR membrane. Both proteins proved to be important for the structural organization of jSR cisternae and retention of CASQ within them, but with different degrees of impact. Our results also suggest that the presence of CASQ is responsible for the wide lumen of the jSR cisternae. Using Ca(2+) imaging and Ca(2+) selective microelectrodes we found that changes in e-c coupling, SR Ca(2+)content and resting [Ca(2+)] in Jct, Tdn and Tdn/Jct-null muscles are directly correlated to the effect of each deletion on CASQ content and its organization within the jSR. These data suggest that in skeletal muscle the disruption of Tdn/CASQ link has a more profound effect on jSR architecture and myoplasmic Ca(2+) regulation than Jct/CASQ association.  相似文献   
305.
Genetic and molecular studies suggest that activin receptor-like kinase 1 (ALK1), a transforming growth factor β (TGF-β) type I receptor, and endoglin, a TGF-β co-receptor, play an essential role in vascular development and pathological angiogenesis. Several agents that interfere with ALK1 and endoglin function are currently in clinical trials for antiangiogenic activity in cancer therapy. One of these agents, PF-03446962 (anti-hALK1 antibody), shows promising results in the clinic. However, its effects on endothelial cell function and mechanism of action are unclear. Here we demonstrate that anti-hALK1 antibody selectively recognizes human ALK1. The anti-hALK1 antibody interfered with bone morphogenetic protein 9 (BMP9)-induced signaling in endothelial cells. Consistent with this notion, anti-hALK1 antibody was found to compete highly efficiently with the binding of the ALK1 ligand BMP9 and TGF-β to ALK1. Moreover, it prevented BMP9-dependent recruitment of co-receptor endoglin into this angiogenesis-mediating signaling complex. In addition, we demonstrated that anti-hALK1 antibody inhibited endothelial cell sprouting but did not directly interfere with vascular endothelial growth factor (VEGF) signaling, VEGF-induced proliferation, and migration of endothelial cells. Finally, we demonstrated that BMP9 in serum is essential for endothelial sprouting and that anti-hALK1 antibody inhibits this potently. Our data suggest that both the VEGF/VEGF receptor and the BMP9/ALK1 pathways are essential for stimulating angiogenesis, and targeting both pathways simultaneously may be an attractive strategy to overcome resistance to antiangiogenesis therapy.  相似文献   
306.
Zhang X  Wang X  Zhu H  Kranias EG  Tang Y  Peng T  Chang J  Fan GC 《PloS one》2012,7(3):e32765
Heat shock proteins (Hsps) are well appreciated as intrinsic protectors of cardiomyocytes against numerous stresses. Recent studies have indicated that Hsp20 (HspB6), a small heat shock protein, was increased in blood from cardiomyopathic hamsters. However, the exact source of the increased circulating Hsp20 and its potential role remain obscure. In this study, we observed that the circulating Hsp20 was increased in a transgenic mouse model with cardiac-specific overexpression of Hsp20, compared with wild-type mice, suggesting its origin from cardiomyocytes. Consistently, culture media harvested from Hsp20-overexpressing cardiomyocytes by Ad.Hsp20 infection contained an increased amount of Hsp20, compared to control media. Furthermore, we identified that Hsp20 was secreted through exosomes, independent of the endoplasmic reticulum-Golgi pathway. To investigate whether extracellular Hsp20 promotes angiogenesis, we treated human umbilical vein endothelial cells (HUVECs) with recombinant human Hsp20 protein, and observed that Hsp20 dose-dependently promoted HUVEC proliferation, migration and tube formation. Moreover, a protein binding assay and immunostaining revealed an interaction between Hsp20 and VEGFR2. Accordingly, stimulatory effects of Hsp20 on HUVECs were blocked by a VEGFR2 neutralizing antibody and CBO-P11 (a VEGFR inhibitor). These in vitro data are consistent with the in vivo findings that capillary density was significantly enhanced in Hsp20-overexpressing hearts, compared to non-transgenic hearts. Collectively, our findings demonstrate that Hsp20 serves as a novel cardiokine in regulating myocardial angiogenesis through activation of the VEGFR signaling cascade.  相似文献   
307.

Background

Histidine-rich calcium binding protein (HRC) is located in the lumen of sarcoplasmic reticulum (SR) that binds to both triadin (TRN) and SERCA affecting Ca2+ cycling in the SR. Chronic overexpression of HRC that may disrupt intracellular Ca2+ homeostasis is implicated in pathogenesis of cardiac hypertrophy. Ablation of HRC showed relatively normal phenotypes under basal condition, but exhibited a significantly increased susceptibility to isoproterenol-induced cardiac hypertrophy. In the present study, we characterized the functions of HRC related to Ca2+ cycling and pathogenesis of cardiac hypertrophy using the in vitro siRNA- and the in vivo adeno-associated virus (AAV)-mediated HRC knock-down (KD) systems, respectively.

Methodology/Principal Findings

AAV-mediated HRC-KD system was used with or without C57BL/6 mouse model of transverse aortic constriction-induced failing heart (TAC-FH) to examine whether HRC-KD could enhance cardiac function in failing heart (FH). Initially we expected that HRC-KD could elicit cardiac functional recovery in failing heart (FH), since predesigned siRNA-mediated HRC-KD enhanced Ca2+ cycling and increased activities of RyR2 and SERCA2 without change in SR Ca2+ load in neonatal rat ventricular cells (NRVCs) and HL-1 cells. However, AAV9-mediated HRC-KD in TAC-FH was associated with decreased fractional shortening and increased cardiac fibrosis compared with control. We found that phospho-RyR2, phospho-CaMKII, phospho-p38 MAPK, and phospho-PLB were significantly upregulated by HRC-KD in TAC-FH. A significantly increased level of cleaved caspase-3, a cardiac cell death marker was also found, consistent with the result of TUNEL assay.

Conclusions/Significance

Increased Ca2+ leak and cytosolic Ca2+ concentration due to a partial KD of HRC could enhance activity of CaMKII and phosphorylation of p38 MAPK, causing the mitochondrial death pathway observed in TAC-FH. Our results present evidence that down-regulation of HRC could deteriorate cardiac function in TAC-FH through perturbed SR-mediated Ca2+ cycling.  相似文献   
308.
Sireviruses are one of the three genera of Copia long terminal repeat (LTR) retrotransposons, exclusive to and highly abundant in plants, and with a unique, among retrotransposons, genome structure. Yet, perhaps due to the few references to the Sirevirus origin of some families, compounded by the difficulty in correctly assigning retrotransposon families into genera, Sireviruses have hardly featured in recent research. As a result, analysis at this key level of classification and details of their colonization and impact on plant genomes are currently lacking. Recently, however, it became possible to accurately assign elements from diverse families to this genus in one step, based on highly conserved sequence motifs. Hence, Sirevirus dynamics in the relatively obese maize genome can now be comprehensively studied. Overall, we identified >10 600 intact and approximately 28 000 degenerate Sirevirus elements from a plethora of families, some brought into the genus for the first time. Sireviruses make up approximately 90% of the Copia population and it is the only genus that has successfully infiltrated the genome, possibly by experiencing intense amplification during the last 600 000 years, while being constantly recycled by host mechanisms. They accumulate in chromosome-distal gene-rich areas, where they insert in between gene islands, mainly in preferred zones within their own genomes. Sirevirus LTRs are heavily methylated, while there is evidence for a palindromic consensus target sequence. This work brings Sireviruses in the spotlight, elucidating their lifestyle and history, and suggesting their crucial role in the current genomic make-up of maize, and possibly other plant hosts.  相似文献   
309.
Colony stimulating factor-1 (CSF-1) and its receptor (CSF-1R) are key regulators of macrophage biology, and their elevated expression in cancer cells has been linked to poor prognosis. CSF-1Rs are thought to function at the plasma membrane. We show here that functional CSF-1Rs are present at the nuclear envelope of various cell types, including primary macrophages, human cancer cell lines, and primary human carcinomas. In response to CSF-1, added to intact cells or isolated nuclei, nucleus-associated CSF-1R became phosphorylated and triggered the phosphorylation of Akt and p27 inside the nucleus. Extracellularly added CSF-1 was also found to colocalize with nucleus-associated CSF-1Rs. All these activities were found to depend selectively on the activity of the p110δ isoform of phosphoinositide 3-kinase (PI3K). This finding was related to the p110δ-dependent translocation of exogenous CSF-1 to the nucleus-associated CSF-1Rs, correlating with a prominent role of p110δ in activation of the Rab5 GTPase, a key regulator of the endocytic trafficking. siRNA-silencing of Rab5a phenocopied p110δ inactivation and nuclear CSF-1 signaling. Our work demonstrates for the first time the presence of functional nucleus-associated CSF-1Rs, which are activated by extracellular CSF-1 by a mechanism that involves p110δ and Rab5 activity. These findings may have important implications in cancer development.  相似文献   
310.
Leprosy provides a model to investigate mechanisms of immune regulation in humans, given that the disease forms a spectrum of clinical presentations that correlate with host immune responses. Here we identified 13 miRNAs that were differentially expressed in the lesions of subjects with progressive lepromatous (L-lep) versus the self-limited tuberculoid (T-lep) disease. Bioinformatic analysis revealed a significant enrichment of L-lep-specific miRNAs that preferentially target key immune genes downregulated in L-lep versus T-lep lesions. The most differentially expressed miRNA in L-lep lesions, hsa-mir-21, was upregulated in Mycobacterium leprae-infected monocytes. By directly downregulating Toll-like receptor 2/1 heterodimer (TLR2/1)-induced CYP27B1 and IL1B expression as well as indirectly upregulating interleukin-10 (IL-10), hsa-mir-21 inhibited expression of the genes encoding two vitamin D-dependent antimicrobial peptides, CAMP and DEFB4A. Conversely, knockdown of hsa-mir-21 in M. leprae-infected monocytes enhanced expression of CAMP and DEFB4A and restored TLR2/1-mediated antimicrobial activity against M. leprae. Therefore, the ability of M. leprae to upregulate hsa-mir-21 targets multiple genes associated with the immunologically localized disease form, providing an effective mechanism to escape from the vitamin D-dependent antimicrobial pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号