首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8589篇
  免费   670篇
  国内免费   8篇
  9267篇
  2023年   44篇
  2022年   88篇
  2021年   182篇
  2020年   122篇
  2019年   129篇
  2018年   219篇
  2017年   181篇
  2016年   270篇
  2015年   458篇
  2014年   435篇
  2013年   573篇
  2012年   746篇
  2011年   653篇
  2010年   424篇
  2009年   336篇
  2008年   500篇
  2007年   463篇
  2006年   454篇
  2005年   429篇
  2004年   434篇
  2003年   398篇
  2002年   324篇
  2001年   105篇
  2000年   81篇
  1999年   87篇
  1998年   85篇
  1997年   52篇
  1996年   60篇
  1995年   55篇
  1994年   55篇
  1993年   39篇
  1992年   65篇
  1991年   61篇
  1990年   40篇
  1989年   36篇
  1988年   37篇
  1987年   38篇
  1986年   33篇
  1985年   49篇
  1984年   39篇
  1983年   35篇
  1982年   27篇
  1981年   26篇
  1980年   31篇
  1979年   28篇
  1978年   28篇
  1977年   25篇
  1976年   31篇
  1975年   26篇
  1974年   19篇
排序方式: 共有9267条查询结果,搜索用时 15 毫秒
131.
132.
133.
134.
Two new flavonols, 5,7,4′-trihydroxy-3,6,8,3′-tetramethoxyflavone and quercetagetin 3,5,6,3′-tetramethyl ether, were identified in leaves of Chrysothamnus viscidiflorus. Eight known methyl ethers based on kaempferol, quercetin or their 6-hydroxy derivatives were also detected.  相似文献   
135.
The recent development of mutant-selective inhibitors for the oncogenic KRASG12C allele has generated considerable excitement. These inhibitors covalently engage the mutant C12 thiol located within the phosphoryl binding loop of RAS, locking the KRASG12C protein in an inactive state. While clinical trials of these inhibitors have been promising, mechanistic questions regarding the reactivity of this thiol remain. Here, we show by NMR and an independent biochemical assay that the pKa of the C12 thiol is depressed (pKa ∼7.6), consistent with susceptibility to chemical ligation. Using a validated fluorescent KRASY137W variant amenable to stopped-flow spectroscopy, we characterized the kinetics of KRASG12C fluorescence changes upon addition of ARS-853 or AMG 510, noting that at low temperatures, ARS-853 addition elicited both a rapid first phase of fluorescence change (attributed to binding, Kd = 36.0 ± 0.7 μM) and a second, slower pH-dependent phase, taken to represent covalent ligation. Consistent with the lower pKa of the C12 thiol, we found that reversible and irreversible oxidation of KRASG12C occurred readily both in vitro and in the cellular environment, preventing the covalent binding of ARS-853. Moreover, we found that oxidation of the KRASG12C Cys12 to a sulfinate altered RAS conformation and dynamics to be more similar to KRASG12D in comparison to the unmodified protein, as assessed by molecular dynamics simulations. Taken together, these findings provide insight for future KRASG12C drug discovery efforts, and identify the occurrence of G12C oxidation with currently unknown biological ramifications.  相似文献   
136.
The fall armyworm (FAW), Spodoptera frugiperda, is a major pest native to the Americas that has recently invaded the Old World. Point mutations in the target-site proteins acetylcholinesterase-1 (ace-1), voltage-gated sodium channel (VGSC) and ryanodine receptor (RyR) have been identified in S. frugiperda as major resistance mechanisms to organophosphate, pyrethroid and diamide insecticides respectively. Mutations in the adenosine triphosphate-binding cassette transporter C2 gene (ABCC2) have also been identified to confer resistance to Cry1F protein. In this study, we applied a whole-genome sequencing (WGS) approach to identify point mutations in the target-site genes in 150 FAW individuals collected from China, Malawi, Uganda and Brazil. This approach revealed three amino acid substitutions (A201S, G227A and F290V) of S. frugiperda ace-1, which are known to be associated with organophosphate resistance. The Brazilian population had all three ace-1 point mutations and the 227A allele (mean frequency = 0.54) was the most common. Populations from China, Malawi and Uganda harbored two of the three ace-1 point mutations (A201S and F290V) with the 290V allele (0.47–0.58) as the dominant allele. Point mutations in VGSC (T929I, L932F and L1014F) and RyR (I4790M and G4946E) were not detected in any of the 150 individuals. A novel 12-bp insertion mutation in exon 15 of the ABCC2 gene was identified in some of the Brazilian individuals but absent in the invasive populations. Our results not only demonstrate robustness of the WGS-based genomic approach for detection of resistance mutations, but also provide insights for improvement of resistance management tactics in S. frugiperda.  相似文献   
137.
Diet is considered as one of the most important modifiable factors influencing human health, but efforts to identify foods or dietary patterns associated with health outcomes often suffer from biases, confounding, and reverse causation. Applying Mendelian randomization in this context may provide evidence to strengthen causality in nutrition research. To this end, we first identified 283 genetic markers associated with dietary intake in 445,779 UK Biobank participants. We then converted these associations into direct genetic effects on food exposures by adjusting them for effects mediated via other traits. The SNPs which did not show evidence of mediation were then used for MR, assessing the association between genetically predicted food choices and other risk factors, health outcomes. We show that using all associated SNPs without omitting those which show evidence of mediation, leads to biases in downstream analyses (genetic correlations, causal inference), similar to those present in observational studies. However, MR analyses using SNPs which have only a direct effect on the exposure on food exposures provided unequivocal evidence of causal associations between specific eating patterns and obesity, blood lipid status, and several other risk factors and health outcomes.  相似文献   
138.
Invasive mesopredators are responsible for the decline of many species of native mammals worldwide. Feral cats have been causally linked to multiple extinctions of Australian mammals since European colonization. While feral cats are found throughout Australia, most research has been undertaken in arid habitats, thus there is a limited understanding of feral cat distribution, abundance, and ecology in Australian tropical rainforests. We carried out camera‐trapping surveys at 108 locations across seven study sites, spanning 200 km in the Australian Wet Tropics. Single‐species occupancy analysis was implemented to investigate how environmental factors influence feral cat distribution. Feral cats were detected at a rate of 5.09 photographs/100 days, 11 times higher than previously recorded in the Australian Wet Tropics. The main environmental factors influencing feral cat occupancy were a positive association with terrain ruggedness, a negative association with elevation, and a higher affinity for rainforest than eucalypt forest. These findings were consistent with other studies on feral cat ecology but differed from similar surveys in Australia. Increasingly harsh and consistently wet weather conditions at higher elevations, and improved shelter in topographically complex habitats may drive cat preference for lowland rainforest. Feral cats were positively associated with roads, supporting the theory that roads facilitate access and colonization of feral cats within more remote parts of the rainforest. Higher elevation rainforests with no roads could act as refugia for native prey species within the critical weight range. Regular monitoring of existing roads should be implemented to monitor feral cats, and new linear infrastructure should be limited to prevent encroachment into these areas. This is pertinent as climate change modeling suggests that habitats at higher elevations will become similar to lower elevations, potentially making the environment more suitable for feral cat populations.  相似文献   
139.
The mammalian germline is characterized by extensive epigenetic reprogramming during its development into functional eggs and sperm. Specifically, the epigenome requires resetting before parental marks can be established and transmitted to the next generation. In the female germline, X‐chromosome inactivation and reactivation are among the most prominent epigenetic reprogramming events, yet very little is known about their kinetics and biological function. Here, we investigate X‐inactivation and reactivation dynamics using a tailor‐made in vitro system of primordial germ cell‐like cell (PGCLC) differentiation from mouse embryonic stem cells. We find that X‐inactivation in PGCLCs in vitro and in germ cell‐competent epiblast cells in vivo is moderate compared to somatic cells, and frequently characterized by escaping genes. X‐inactivation is followed by step‐wise X‐reactivation, which is mostly completed during meiotic prophase I. Furthermore, we find that PGCLCs which fail to undergo X‐inactivation or reactivate too rapidly display impaired meiotic potential. Thus, our data reveal fine‐tuned X‐chromosome remodelling as a critical feature of female germ cell development towards meiosis and oogenesis.  相似文献   
140.
Optimal control simulations have shown that both musculoskeletal dynamics and physiological noise are important determinants of movement. However, due to the limited efficiency of available computational tools, deterministic simulations of movement focus on accurately modelling the musculoskeletal system while neglecting physiological noise, and stochastic simulations account for noise while simplifying the dynamics. We took advantage of recent approaches where stochastic optimal control problems are approximated using deterministic optimal control problems, which can be solved efficiently using direct collocation. We were thus able to extend predictions of stochastic optimal control as a theory of motor coordination to include muscle coordination and movement patterns emerging from non-linear musculoskeletal dynamics. In stochastic optimal control simulations of human standing balance, we demonstrated that the inclusion of muscle dynamics can predict muscle co-contraction as minimal effort strategy that complements sensorimotor feedback control in the presence of sensory noise. In simulations of reaching, we demonstrated that nonlinear multi-segment musculoskeletal dynamics enables complex perturbed and unperturbed reach trajectories under a variety of task conditions to be predicted. In both behaviors, we demonstrated how interactions between task constraint, sensory noise, and the intrinsic properties of muscle influence optimal muscle coordination patterns, including muscle co-contraction, and the resulting movement trajectories. Our approach enables a true minimum effort solution to be identified as task constraints, such as movement accuracy, can be explicitly imposed, rather than being approximated using penalty terms in the cost function. Our approximate stochastic optimal control framework predicts complex features, not captured by previous simulation approaches, providing a generalizable and valuable tool to study how musculoskeletal dynamics and physiological noise may alter neural control of movement in both healthy and pathological movements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号