首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8197篇
  免费   630篇
  国内免费   8篇
  8835篇
  2023年   44篇
  2022年   88篇
  2021年   176篇
  2020年   121篇
  2019年   128篇
  2018年   215篇
  2017年   176篇
  2016年   257篇
  2015年   438篇
  2014年   420篇
  2013年   547篇
  2012年   719篇
  2011年   629篇
  2010年   414篇
  2009年   322篇
  2008年   477篇
  2007年   445篇
  2006年   432篇
  2005年   412篇
  2004年   415篇
  2003年   386篇
  2002年   309篇
  2001年   97篇
  2000年   71篇
  1999年   75篇
  1998年   80篇
  1997年   47篇
  1996年   53篇
  1995年   50篇
  1994年   51篇
  1993年   36篇
  1992年   51篇
  1991年   51篇
  1990年   31篇
  1989年   35篇
  1988年   31篇
  1987年   28篇
  1986年   29篇
  1985年   45篇
  1984年   35篇
  1983年   30篇
  1982年   24篇
  1981年   25篇
  1980年   30篇
  1979年   27篇
  1978年   26篇
  1977年   24篇
  1976年   31篇
  1975年   25篇
  1974年   19篇
排序方式: 共有8835条查询结果,搜索用时 15 毫秒
81.
Gichner T 《Mutation research》2003,535(2):187-193
We have measured the level of DNA damage induced by treating roots (cellular Comet assay) and isolated root nuclei (acellular Comet assay) of catalase-deficient (CAT1AS) and wild-type (SR1) tobacco with the promutagen o-phenylenediamine (o-PDA) and the direct acting genotoxic agents hydrogen peroxide and ethyl methanesulphonate (EMS). The roots of CAT1AS have about 60% less catalase activity compared to the roots of SR1. The promutagen o-PDA applied on tobacco roots induced significantly higher levels of DNA damage in the CAT1AS transgenic line than in SR1, while after application of o-PDA on isolated root nuclei, no DNA damage could be detected. In the catalase-deficient line CAT1AS about six-fold lower concentrations of H(2)O(2) are sufficient to induce the same levels of DNA damage as in SR1. By contrast, after treatment of isolated root nuclei with H(2)O(2) no difference in the induced levels of DNA damage was observed between CAT1AS and SR1. The DNA damaging effect of EMS was not affected by the presence of catalase in the tobacco roots and the levels of DNA damage measured by the cellular and acellular assay were similar.Comparing the effects of genotoxic agents in both the cellular and acellular Comet assays may help to elucidate their mechanism of action. Differences in both systems may reveal the participation of scavengers and of repair and metabolic enzymes on the activity of the genotoxic agent and the role of the cell wall in preventing the agent from reacting with nuclear DNA.  相似文献   
82.
Plants vary widely in how common or rare they are, but whether commonness of species is associated with functional traits is still debated. This might partly be because commonness can be measured at different spatial scales, and because most studies focus solely on aboveground functional traits. We measured five root traits and seed mass on 241 central European grassland species, and extracted their specific leaf area, height, mycorrhizal status and bud-bank size from databases. Then we tested if trait values are associated with commonness at seven spatial scales, ranging from abundance in 16-m2 grassland plots, via regional and European-wide occurrence frequencies, to worldwide naturalization success. At every spatial scale, commonness was associated with at least three traits. The traits explained the greatest proportions of variance for abundance in grassland plots (42%) and naturalization success (41%) and the least for occurrence frequencies in Europe and the Mediterranean (2%). Low root tissue density characterized common species at every scale, whereas other traits showed directional changes depending on the scale. We also found that many of the effects had significant non-linear effects, in most cases with the highest commonness-metric value at intermediate trait values. Across scales, belowground traits explained overall more variance in species commonness (19.4%) than aboveground traits (12.6%). The changes we found in the relationships between traits and commonness, when going from one spatial scale to another, could at least partly explain the maintenance of trait variation in nature. Most importantly, our study shows that within grasslands, belowground traits are at least as important as aboveground traits for species commonness. Therefore, belowground traits should be more frequently considered in studies on plant functional ecology.  相似文献   
83.
The current SARS-CoV-2 pandemic is wreaking havoc throughout the world and has rapidly become a global health emergency. A central question concerning COVID-19 is why some individuals become sick and others not. Many have pointed already at variation in risk factors between individuals. However, the variable outcome of SARS-CoV-2 infections may, at least in part, be due also to differences between the viral subspecies with which individuals are infected. A more pertinent question is how we are to overcome the current pandemic. A vaccine against SARS-CoV-2 would offer significant relief, although vaccine developers have warned that design, testing and production of vaccines may take a year if not longer. Vaccines are based on a handful of different designs (i), but the earliest vaccines were based on the live, attenuated virus. As has been the case for other viruses during earlier pandemics, SARS-CoV-2 will mutate and may naturally attenuate over time (ii). What makes the current pandemic unique is that, thanks to state-of-the-art nucleic acid sequencing technologies, we can follow in detail how SARS-CoV-2 evolves while it spreads. We argue that knowledge of naturally emerging attenuated SARS-CoV-2 variants across the globe should be of key interest in our fight against the pandemic.  相似文献   
84.
85.
Amrinone is a bipyridine compound with characteristic effects on the force-velocity relationship of fast skeletal muscle, including a reduction in the maximum shortening velocity and increased maximum isometric force. Here we performed experiments to elucidate the molecular mechanisms for these effects, with the additional aim to gain insight into the molecular mechanisms underlying the force-velocity relationship. In vitro motility assays established that amrinone reduces the sliding velocity of heavy meromyosin-propelled actin filaments by 30% at different ionic strengths of the assay solution. Stopped-flow studies of myofibrils, heavy meromyosin and myosin subfragment 1, showed that the effects on sliding speed were not because of a reduced rate of ATP-induced actomyosin dissociation because the rate of this process was increased by amrinone. Moreover, optical tweezers studies could not detect any amrinone-induced changes in the working stroke length. In contrast, the ADP affinity of acto-heavy meromyosin was increased about 2-fold by 1 mm amrinone. Similar effects were not observed for acto-subfragment 1. Together with the other findings, this suggests that the amrinone-induced reduction in sliding velocity is attributed to inhibition of a strain-dependent ADP release step. Modeling results show that such an effect may account for the amrinone-induced changes of the force-velocity relationship. The data emphasize the importance of the rate of a strain-dependent ADP release step in influencing the maximum sliding velocity in fast skeletal muscle. The data also lead us to discuss the possible importance of cooperative interactions between the two myosin heads in muscle contraction.Muscle contraction, as well as several other aspects of cell motility, results from cyclic interactions between myosin II motors and actin filaments. These force-generating interactions are driven by the hydrolysis of ATP at the myosin active site as outlined in Scheme 1 (13). In the absence of actin, the Pi and ADP release steps (k4 and k5) are rate-limiting for the entire cycle at high (>12 °C) and low temperatures, respectively (46). In the presence of actin, the rate of Pi release increases significantly, and the overall cycle is accelerated more than 2 orders of magnitude. The sliding velocity of myosin-propelled motors is generally believed to be rate-limited by actomyosin dissociation (rate constant k5, k6, or k2 in Scheme 1) (7). Alternatively, some studies (8, 9) have suggested that the sliding velocity is determined by the fraction of myosin heads in the weak-binding states, AM4 ATP and AM ADP Pi. However, it is worth emphasizing that KT is very low under physiological conditions (1, 3) with low population of these states. For the same reason, the rate of dissociation of the AM complex is governed by K1 and k2.Open in a separate windowSCHEME 1.Simplified kinetics scheme for MgATP turnover by myosin (lower row) and actomyosin (upper row). Inorganic phosphate is denoted by Pi; MgATP is denoted by ATP, and MgADP is denoted by ADP; myosin is denoted by M. The states AM*ADP and AM ADP correspond to myosin heads with their nucleotide binding pocket in a partially closed and open conformation, respectively (7, 52). Rate constants are indicated by lowercase letters (rightward transitions, k2k5 and k2k5, or leftward transitions, k−2k−5 and k−2k−5) and equilibrium constants by uppercase letters (K1, K1, KT, K3, K3, K6, k6, and KDP). The equilibrium constants are association constants except for simple bimolecular reactions where they are defined as ki/ki.For the study of contractile mechanisms in both muscle and other types of cells, drugs may be useful as pharmacological tools affecting different transitions or states in the force-generating cycle. Whereas the use of drugs as tools may be less specific than site-directed mutagenesis, it also has advantages. The motor protein function may be studied in vivo, with maintained ordering of the protein components, e.g. as in the muscle sarcomere, allowing more insight into the relationship between specific molecular events and contractile properties of muscle. A drug that has been used quite extensively in this context is butanedione monoxime. The usefulness of this drug is based on firm characterization of its effect on actomyosin function on the molecular level (3, 1013). More recently other drugs, like N-benzyl-p-toluene sulfonamide (14, 15) and blebbistatin (16), have been found to affect myosin function, and their effects at the molecular level have also been elucidated in some detail (14, 15, 17, 18). Both these drugs appear to affect the actomyosin interaction in a similar way as butanedione monoxime by inhibiting a step before (or very early in) the myosin power stroke, leading to the inhibition of actomyosin cross-bridge formation and force production.In contrast to the reduced isometric force, caused by the above mentioned drugs, the bipyridine compound amrinone (Fig. 1A) has been found to increase the isometric force production of fast intact skeletal muscles of the frog (19, 20) and mouse (21) and also of fast (but much less slow) skinned muscle fibers of the rat (22). In all the fast myosin preparations, the effect of about 1 mm amrinone on isometric force was associated with characteristic changes of the force-velocity relationship (Fig. 1B), including a reduced maximum velocity of shortening (1922) and a reduced curvature of the force-velocity relationship (1922). The latter effect was accompanied (20, 21) by a less pronounced deviation of the force-velocity relationship from the hyperbolic shape (23) at high loads. There have been different interpretations of the drug effects. It has been proposed (2022) that amrinone might competitively inhibit the MgATP binding by myosin. However, more recently, results from in vitro motility assay experiments (24) challenged this idea. These results showed that amrinone reduces the sliding velocity (Vmax) at saturating MgATP concentrations but not at MgATP concentrations close to, or below, the Km value for the hyperbolic relationship between MgATP concentration and sliding velocity. Such a combination of effects is consistent with a reduced MgADP release rate (24) but not with competitive inhibition of substrate binding. However, effects of amrinone on the MgADP release rate have not been directly demonstrated. Additionally, in view of the uncertainty about what step actually determines the sliding velocity at saturating [MgATP] (see above and Refs. 79), it is of interest to consider other possible drug effects that could account for the data of Klinth et al. (24). These include the following: 1) an increased drag force, e.g. because of enhancement of weak actomyosin interactions; 2) a reduced step length; and 3) effects of the drug on the rate of MgATP-induced dissociation of actomyosin.Open in a separate windowFIGURE 1.A, structure of amrinone. B, experimental force-velocity data obtained in the presence (filled symbols) and absence (open symbols) of 1.1 mm amrinone. The data, from intact single frog muscle fibers, were obtained at 2 °C and fitted by Hill''s (42) hyperbola (lines) for data truncated at 80% of the maximum isometric force. Filled line, equation fitted to control data, a/P0* = 0.185; P0*/P0 = 1.196. Dashed line, amrinone, a/P0* = 0.347; P0*/P0 = 1.009. Force-velocity data were obtained in collaboration with Professor K. A. P. Edman. Same data as in Fig. 8 of Ref. 20. Note a decrease in maximum sliding velocity and curvature of the force-velocity relationship at low force, in response to amrinone. Also note that amrinone caused increased isometric force and a reduced deviation of the force-velocity relationship from the Hill''s hyperbola at high force. All changes of the force-velocity relationship were statistically significant (20), and similar changes were later also observed in intact mouse muscle and skinned rat muscle fibers. Data in Fig. 1 are published by agreement with Professor K. A. P. Edman.To differentiate between these hypotheses for the amrinone effects, and to gain more general insight into fundamental aspects of muscle function (e.g. mechanisms underlying the force-velocity relationship), we here study the molecular effects of amrinone on fast skeletal muscle myosin preparations in the presence and absence of actin.In vitro motility assay studies at different ionic strengths suggest that drag forces, caused by increased fraction of myosin heads in weak binding states, are not important for the effect of amrinone on sliding velocity. Likewise, optical tweezers studies showed no effect of the drug on the myosin step length. Finally, ideas that amrinone should reduce sliding velocity by reduced rate of MgATP-induced dissociation could be discarded because the drug actually increased the rate of this process. Instead, we found an amrinone-induced increase in the MgADP affinity of heavy meromyosin (HMM) in the presence of actin. Interestingly, similar effects of amrinone were not observed using myosin S1. As discussed below, this result and other results point to an amrinone-induced reduction in the rate of a strain-dependent MgADP release step. Simulations, using a model modified from that of Edman et al. (25), support this proposed mechanism of action. The results are discussed in relation to fundamental mechanisms underlying the force-velocity relationship of fast skeletal muscle, including which step determines shortening velocity and the possible importance of inter-head cooperativity.  相似文献   
86.
Sorghum, a C4 model plant, has been studied to develop an understanding of the molecular mechanism of resistance to stress. The auxin-response genes, auxin/indole-3-acetic acid (Aux/IAA), auxin-response factor (ARF), Gretchen Hagen3 (GH3), small auxin-up RNAs, and lateral organ boundaries (LBD), are involved in growth/development and stress/defense responses in Arabidopsis and rice, but they have not been studied in sorghum. In the present paper, the chromosome distribution, gene duplication, promoters, intron/exon, and phylogenic relationships of Aux/IAA, ARF, GH3, and LBD genes in sorghum are presented. Furthermore, real-time PCR analysis demonstrated these genes are differently expressed in leaf/root of sorghum and indicated the expression profile of these gene families under IAA, brassinosteroid (BR), salt, and drought treatments. The SbGH3 and SbLBD genes, expressed in low level under natural condition, were highly induced by salt and drought stress consistent with their products being involved in both abiotic stresses. Three genes, SbIAA1, SbGH3-13, and SbLBD32, were highly induced under all the four treatments, IAA, BR, salt, and drought. The analysis provided new evidence for role of auxin in stress response, implied there are cross talk between auxin, BR and abiotic stress signaling pathways.  相似文献   
87.
Admixture mapping (AM) is a promising method for the identification of genetic risk factors for complex traits and diseases showing prevalence differences among populations. Efficient application of this method requires the use of a genomewide panel of ancestry-informative markers (AIMs) to infer the population of origin of chromosomal regions in admixed individuals. Genomewide AM panels with markers showing high frequency differences between West African and European populations are already available for disease-gene discovery in African Americans. However, no such a map is yet available for Hispanic/Latino populations, which are the result of two-way admixture between Native American and European populations or of three-way admixture of Native American, European, and West African populations. Here, we report a genomewide AM panel with 2,120 AIMs showing high frequency differences between Native American and European populations. The average intermarker genetic distance is ~1.7 cM. The panel was identified by genotyping, with the Affymetrix GeneChip Human Mapping 500K array, a population sample with European ancestry, a Mesoamerican sample comprising Maya and Nahua from Mexico, and a South American sample comprising Aymara/Quechua from Bolivia and Quechua from Peru. The main criteria for marker selection were both high information content for Native American/European ancestry (measured as the standardized variance of the allele frequencies, also known as "f value") and small frequency differences between the Mesoamerican and South American samples. This genomewide AM panel will make it possible to apply AM approaches in many admixed populations throughout the Americas.  相似文献   
88.
89.
The fatality rate associated with Streptococcus pneumoniae meningitis remains high despite adequate antibiotic treatment. IL-1 is an important proinflammatory cytokine, which is up-regulated in brain tissue after the induction of meningitis. To determine the role of IL-1 in pneumococcal meningitis we induced meningitis by intranasal inoculation with 8 x 10(4) CFU of S. pneumoniae and 180 U of hyaluronidase in IL-1R type I gene-deficient (IL-1R(-/-)) mice and wild-type mice. Meningitis resulted in elevated IL-1alpha and IL-1beta mRNA and protein levels in the brain. The absence of an intact IL-1 signal was associated with a higher susceptibility to develop meningitis. Furthermore, the lack of IL-1 impaired bacterial clearance, as reflected by an increased number of CFU in cerebrospinal fluid of IL-1R(-/-) mice. The characteristic pleocytosis of meningitis was not significantly altered in IL-1R(-/-) mice, but meningitis was associated with lower brain levels of cytokines. The mortality was significantly higher and earlier in the course of the disease in IL-1R(-/-) mice. These results demonstrate that endogenous IL-1 is required for an adequate host defense in pneumococcal meningitis.  相似文献   
90.
A mathematical model examined a potential therapy for controlling viral infections using genetically modified viruses. The control of the infection is an indirect effect of the selective elimination by an engineered virus of infected cells that are the source of the pathogens. Therefore, this engineered virus could greatly compensate for a dysfunctional immune system compromised by AIDS. In vitro studies using engineered viruses have been shown to decrease the HIV-1 load about 1000-fold. However, the efficacy of this potential treatment for reducing the viral load in AIDS patients is unknown. The present model studied the interactions among the HIV-1 virus, its main host cell (activated CD4+ T cells), and a therapeutic engineered virus in an in vivo context; and it examined the conditions for controlling the pathogen. This model predicted a significant drop in the HIV-1 load, but the treatment does not eradicate HIV. A basic estimation using a currently engineered virus indicated an HIV-1 load reduction of 92% and a recovery of host cells to 17% of their normal level. Greater success (98% HIV reduction, 44% host cells recovery) is expected as more competent engineered viruses are designed. These results suggest that therapy using viruses could be an alternative to extend the survival of AIDS patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号