首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8222篇
  免费   633篇
  国内免费   8篇
  2023年   39篇
  2022年   67篇
  2021年   176篇
  2020年   121篇
  2019年   128篇
  2018年   215篇
  2017年   177篇
  2016年   257篇
  2015年   441篇
  2014年   421篇
  2013年   548篇
  2012年   720篇
  2011年   632篇
  2010年   416篇
  2009年   323篇
  2008年   485篇
  2007年   447篇
  2006年   432篇
  2005年   411篇
  2004年   419篇
  2003年   387篇
  2002年   310篇
  2001年   97篇
  2000年   72篇
  1999年   76篇
  1998年   82篇
  1997年   47篇
  1996年   54篇
  1995年   50篇
  1994年   51篇
  1993年   35篇
  1992年   51篇
  1991年   51篇
  1990年   31篇
  1989年   35篇
  1988年   35篇
  1987年   31篇
  1986年   29篇
  1985年   47篇
  1984年   37篇
  1983年   30篇
  1982年   24篇
  1981年   26篇
  1980年   30篇
  1979年   28篇
  1978年   27篇
  1977年   24篇
  1976年   31篇
  1975年   26篇
  1974年   19篇
排序方式: 共有8863条查询结果,搜索用时 31 毫秒
891.
In the cell, DNA is wrapped on histone octamers, which reduces its accessibility for DNA interacting enzymes. We investigated de novo methylation of nucleosomal DNA in vitro and show that the Dnmt3a and Dnmt1 DNA methyltransferases efficiently methylate nucleosomal DNA without dissociation of the histone octamer from the DNA. In contrast, the prokaryotic SssI DNA methyltransferase and the catalytic domain of Dnmt3a are strongly inhibited by nucleosomes. We also found that full-length Dnmt1 and Dnmt3a bind to nucleosomes much stronger than their isolated catalytic domains, demonstrating that the N-terminal parts of the MTases are required for the interaction with nucleosomes. Variations of the DNA sequence or the histone tails did not significantly influence the methylation activity of Dnmt3a. The observation that mammalian methyltransferases directly modify nucleosomal DNA provides an insight into the mechanisms by which histone tail and DNA methylation patterns can influence each other because the DNA methylation pattern can be established while histones remain associated to the DNA.  相似文献   
892.
Two alternatively spliced Caenorhabditis elegans G protein-coupled receptors, T19F4.1a and T19F4.1b, were cloned and functionally characterized. The T19F4.1b receptor protein is 30 amino acids longer than T19F4.1a, and the difference in amino acid constitution is exclusively conferred to the intracellular C-terminal region, suggesting a potential difference in G protein-coupling specificity. Following cloning of the receptor cDNAs into the pcDNA3 vector and stable or transient transfection into Chinese hamster ovary cells, the aequorin bioluminescence/Ca2+ assay was used to investigate receptor activation. This is the first report of the construction of a cell line stably expressing a C. elegans neuropeptide receptor. Our experiments identified both receptors as being cognate receptors for two FMRFamide-related peptides encoded by the flp-2 precursor: SPREPIRFamide (FLP2-A) and LRGEPIRFamide (FLP2-B). Pharmacological profiling using truncated forms of FLP2-A and -B revealed that the active core of both peptides is EPIRFamide. Screening of peptides encoded by other flps did not result in a significant activation of the receptor. In contrast to other C. elegans receptors tested in heterologous expression systems, the functional activation of both T19F4.1a and T19F4.1b was not temperature-dependent. Screening in cells lacking the promiscuous Galpha16 suggests that T19F4.1a and b are both linked to the Gq pathway.  相似文献   
893.
Geerlof A  Travers F  Barman T  Lionne C 《Biochemistry》2005,44(45):14948-14955
3-Phosphoglycerate kinase (PGK) is the first ATP-producing enzyme in glycolysis: ADP + 1,3-bisphosphoglycerate (bPG) <--> ATP + 3-phosphoglycerate (PG). Whereas extensive studies have been carried out on its structure, there is less information about its reaction pathway, which is usually studied in the reverse direction because of the instability of bPG. We studied the transients of the PGK reaction by chemical sampling in a rapid quench flow apparatus, using [gamma-(32)P]ATP, in 30% methanol at 4 degrees C to decrease k(cat). There were two types of experiment, both at low PG concentrations to prevent bPG release. In the first, reaction mixtures were quenched in acid at different times (from 4 ms) and the bPG concentrations were determined. This type gave information about the ATP binding and phospho-transfer steps. In the second, PGK reaction mixtures at equilibrium were perturbed by the injection of ADP, the new mixtures aged for different times and quenched in acid, and the bPG concentrations were determined. This gave information about the kinetics of the binding of ADP to a PGK intermediate. The data from the two types of experiments were fitted to simple schemes and then treated together by a global fitting procedure using a five-step pathway, deduced from previous structural studies. Under our conditions, it appears that (1) a binary PGK.bPG complex is an important intermediate on the reaction pathway, i.e., that ADP is released before bPG, (2) ADP binds to a "closed" conformation in the PGK.bPG complex, and (3) the PGK reaction can be studied in the physiologically important direction without having to handle bPG.  相似文献   
894.
The cyanobacterial water-soluble orange carotenoid binding protein (OCP) is an ideal system for study of the effects of protein environment on photophysical properties of carotenoids. It contains a single pigment, the carotenoid 3'-hydoxyechinenone (hECN). In this study, we focus on spectroscopic properties of hECN in solution and in the OCP, aiming to elucidate the spectroscopic effects of the carotenoid-protein interaction in the context of the function(s) of the OCP. The noncovalent binding of hECN to the OCP causes a conformational change in the hECN, leading to a prolongation of the effective conjugation length. This change is responsible for shortening of the S(1) lifetime from 6.5 ps in solution to 3.3 ps in the OCP. The conformational change and the hydrogen bonding via the carbonyl group of hECN result in stabilization of an intramolecular charge-transfer (ICT) state. No signs of the ICT state were found in hECN in solution, regardless of the solvent polarity; spectral bands in transient absorption spectra of OCP-bound hECN exhibit features typical for the ICT state. Application of global fitting analysis revealed further effects of binding hECN in the OCP. The S(1) state of hECN in the OCP decays with two time constants of 0.9 and 3.3 ps. Modeling of the excited-state processes suggests that these two components are due to two populations of hECN in the OCP that differ in the hydrogen bonding via the carbonyl group. These results support the hypothesis that the OCP functions as a photoprotective shield under excess light. Mechanistically, the broadening of the hECN absorption spectrum upon binding to OCP enhances filtering effect of hECN. Furthermore, the binding-induced conformational change and activation of the ICT state that leads to a shortening of hECN lifetime effectively makes the protein-bound hECN a more effective energy dissipator.  相似文献   
895.
Hay S  Wydrzynski T 《Biochemistry》2005,44(1):431-439
A mutant of the Escherichia coli cytochrome b(562) has been created in which the heme-ligating methionine (Met) at position 7 has been replaced with a histidine (His) (M7H). This protein is a double mutant that also has the His 63 to asparagine (H63N) mutation, which removes a solvent-exposed His. While the H63N mutation has no measurable effect on the cytochrome, the M7H mutation converts the atypical His/Met heme ligation in cytochrome b(562) to the classic cytochrome b-type bis-His ligation. This mutation has little effect on the K(d) of heme binding but significantly reduces the chemical and thermal stability of the mutant cytochrome relative to the wild type (wt). Both proteins have similar absorbance (Abs) and electron paramagnetic resonance (EPR) properties characteristic of 6-coordinate low-spin heme. The Abs spectra of the oxidized and reduced bis-His cytochrome are slightly blue-shifted relative to the wt, and the alpha Abs band of ferrous M7H mutant is unusually split. The M7H mutation decreases the midpoint potential of the bound heme by 260 mV at pH 7 and considerably alters the pH dependence of the E(m), which becomes dominated by a single pK(red) = 6.8.  相似文献   
896.
Cystic fibrosis (CF) is a genetic disease characterized by severe neutrophil-dominated airway inflammation. An important cause of inflammation in CF is Pseudomonas aeruginosa infection. We have evaluated the importance of a number of P. aeruginosa components, namely lipopeptides, LPS, and unmethylated CpG DNA, as proinflammatory stimuli in CF by characterizing the expression and functional activity of their cognate receptors, TLR2/6 or TLR2/1, TLR4, and TLR9, respectively, in a human tracheal epithelial line, CFTE29o(-), which is homozygous for the DeltaF508 CF transmembrane conductance regulator mutation. We also characterized TLR expression and function in a non-CF airway epithelial cell line 16HBE14o(-). Using RT-PCR, we demonstrated TLR mRNA expression. TLR cell surface expression was assessed by fluorescence microscopy. Lipopeptides, LPS, and unmethylated CpG DNA induced IL-8 and IL-6 protein production in a time- and dose-dependent manner. The CF and non-CF cell lines were largely similar in their TLR expression and relative TLR responses. ICAM-1 expression was also up-regulated in CFTE29o(-) cells following stimulation with each agonist. CF bronchoalveolar lavage fluid, which contains LPS, bacterial DNA, and neutrophil elastase (a neutrophil-derived protease that can activate TLR4), up-regulated an NF-kappaB-linked reporter gene and increased IL-8 protein production in CFTE29o(-) cells. This effect was abrogated by expression of dominant-negative versions of MyD88 or Mal, key signal transducers for TLRs, thereby implicating them as potential anti-inflammatory agents for CF.  相似文献   
897.
Thrombin-activatable fibrinolysis inhibitor (TAFI), also known as carboxypeptidase R, has been implicated as an important negative regulator of the fibrinolytic system. In addition, TAFI is able to inactivate inflammatory peptides such as complement factors C3a and C5a. To determine the role of TAFI in the hemostatic and innate immune response to abdominal sepsis, TAFI gene-deficient (TAFI-/-) and normal wild-type mice received an i.p. injection with Escherichia coli. Liver TAFI mRNA and TAFI protein concentrations increased during sepsis. In contrast to the presumptive role of TAFI as a natural inhibitor of fibrinolysis, TAFI-/- mice did not show any difference in E. coli-induced activation of coagulation or fibrinolysis, as measured by plasma levels of thrombin-anti-thrombin complexes and D-dimer and the extent of fibrin depositions in lung and liver tissues. However, TAFI-/- mice were protected from liver necrosis as indicated by histopathology and clinical chemistry. Furthermore, TAFI-/- mice displayed an altered immune response to sepsis, as indicated by an increased neutrophil recruitment to the peritoneal cavity and a transiently increased bacterial outgrowth together with higher plasma TNF-alpha and IL-6 levels. These data argue against an important part for TAFI in the regulation of the procoagulant-fibrinolytic balance in sepsis and reveals a thus far unknown role of TAFI in the occurrence of hepatic necrosis.  相似文献   
898.
Rheumatoid arthritis is a chronic inflammatory autoimmune disease of unknown cause. The immune response against citrullinated Ags has recently become the prime suspect for disease pathogenesis. Immunity against citrullinated Ags is thought to play a pivotal role in the disease for several reasons: 1) citrullinated Ags are expressed in the target organ, the inflamed joint; 2) anti-citrullinated protein Abs are present before the disease becomes manifest; and 3) these Abs are highly specific for rheumatoid arthritis. In this review, data from clinical, genetic, biochemical, and animal studies is combined to create a profile of this remarkable autoantibody response. Moreover, a model is proposed of how the anti-citrullinated proteins response is generated and how it could eventually lead to chronic inflammation.  相似文献   
899.
900.
Previously, we elucidated the intracellular mechanisms by which neutrophil elastase (NE) up-regulates inflammatory gene expression in bronchial epithelial cells. In this study, we examine the effects of both IL-1 and NE on inflammatory gene expression in 16HBE14o- bronchial epithelial cells and investigate approaches to abrogate these inflammatory responses. IL-1 induced IL-8 protein production in time- and dose-dependent fashions, an important observation given that IL-8 is a potent neutrophil chemoattractant and a key inflammatory mediator. IL-1 and NE were shown to activate the p38 MAPK pathway in 16HBE14o- cells. Western blot analysis demonstrated IL-1R-associated kinase 1 (IRAK-1) degradation in response to stimulation with both IL-1 and NE. In addition, the expression of dominant negative IRAK-1 (IRAK-1delta), IRAK-2delta, or IRAK-4delta inhibited IL-1- and NE-induced NF-kappaB-linked reporter gene expression. Dominant negative versions of the intracellular adaptor proteins MyD88 (MyD88delta) and MyD88 adaptor-like (Mal P/H) abrogated NE-induced NF-kappaB reporter gene expression. In contrast, only MyD88delta was found to inhibit IL-1-induced NF-kappaB reporter activity. We also investigated the vaccinia virus proteins, A46R and A52R, which have been shown to antagonize IL-1 signaling. Transfection with A46R or A52R cDNA inhibited IL-1- and NE-induced NF-kappaB and IL-8R gene expression and IL-8 protein production in primary and transformed bronchial epithelial cells. Furthermore, cytokine array studies demonstrated that IL-1 and NE can up-regulate the expression of IL-6, oncostatin M, epithelial cell-derived neutrophil activating peptide-78, growth-related oncogene family members, vascular endothelial growth factor, and GM-CSF, with induction of these proteins inhibited by the viral proteins. These findings identify vaccinia virus proteins as possible therapeutic agents for the manifestations of several inflammatory lung diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号