首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8259篇
  免费   638篇
  国内免费   8篇
  2023年   39篇
  2022年   81篇
  2021年   177篇
  2020年   122篇
  2019年   130篇
  2018年   216篇
  2017年   178篇
  2016年   259篇
  2015年   444篇
  2014年   420篇
  2013年   550篇
  2012年   722篇
  2011年   635篇
  2010年   415篇
  2009年   324篇
  2008年   478篇
  2007年   449篇
  2006年   434篇
  2005年   416篇
  2004年   417篇
  2003年   387篇
  2002年   311篇
  2001年   101篇
  2000年   76篇
  1999年   80篇
  1998年   81篇
  1997年   47篇
  1996年   53篇
  1995年   51篇
  1994年   53篇
  1993年   36篇
  1992年   52篇
  1991年   51篇
  1990年   31篇
  1989年   38篇
  1988年   31篇
  1987年   28篇
  1986年   31篇
  1985年   46篇
  1984年   35篇
  1983年   30篇
  1982年   26篇
  1981年   26篇
  1980年   30篇
  1979年   28篇
  1978年   27篇
  1977年   24篇
  1976年   31篇
  1975年   25篇
  1974年   19篇
排序方式: 共有8905条查询结果,搜索用时 15 毫秒
231.
The constitutive and drought-induced activities of the Arabidopsis thaliana RD29A and RD29B promoters were monitored in soybean (Glycine max (L.) Merr.] via fusions with the visual marker gene β-glucuronidase (GUS). Physiological responses of soybean plants were monitored over 9 days of water deprivation under greenhouse conditions. Data were used to select appropriate time points to monitor the activities of the respective promoter elements. Qualitative and quantitative assays for GUS expression were conducted in root and leaf tissues, from plants under well-watered and dry-down conditions. Both RD29A and RD29B promoters were significantly activated in soybean plants subjected to dry-down conditions. However, a low level of constitutive promoter activity was also observed in both root and leaves of plants under well-watered conditions. GUS expression was notably higher in roots than in leaves. These observations suggest that the respective drought-responsive regulatory elements present in the RD29X promoters may be useful in controlling targeted transgenes to mitigate abiotic stress in soybean, provided the transgene under control of these promoters does not invoke agronomic penalties with leaky expression when no abiotic stress is imposed.  相似文献   
232.
Phytoecdysteroids are steroid compounds present in many plant species (sometimes in rather large amounts), but their biological role is still far from being clear. We have found that the exogenous application of 20-hydroxyecdysone (20E) to leaves of Tetragonia tetragonioides L. causes stimulation of its net photosynthetic rate (P N) but does not positively affect the photosynthetic electron transport or the content of photosynthetic pigments. The increase in P N was observed shortly after 20E treatment and was statistically significant during the 4th and 6th hours after treatment but not later, which could be perhaps caused by a strictly short-term window of opportunity for ecdysteroids to significantly affect photosynthetic processes. To our knowledge, these results are the first to suggest a new potential biological function of phytoecdysteroids—regulation of photosynthesis.  相似文献   
233.
Root structure parameters, root biomass and allometric relationships between above- and belowground biomass were investigated in young Norway spruce (Picea abies [L.] Karst.) trees cultivated inside the glass domes with ambient (AC, 375 μmol(CO2) mol?1) and elevated (EC, A + 375 μmol(CO2) mol?1) atmospheric CO2 concentrations ([CO2]). After 8 years of fumigation, a mean EC tree in comparison with AC one exhibited about 37 % higher belowground biomass. The growth of primary root structure was unaffected by elevated [CO2]; however, the biomass of secondary roots growing on the primary root structure and the biomass of secondary roots growing in the zone between the soil surface and the first primary root ramification were significantly higher in EC comparing with AC treatment about 58 and 70 %, respectively. The finest root’s (diameter up to 1 mm) biomass as well as length and surface area of both primary and secondary root structures showed the highest difference between the treatments; advancing EC to AC by 43 % on average. Therefore, Norway spruce trees cultivated under well-watered and rather nitrogen-poor soil conditions responded to the air elevated [CO2] environment by the enhancement of the secondary root structure increment, by enlargement of root length and root absorbing area, and also by alternation of root to aboveground organ biomass proportion. Higher root to leaf and root to stem basal area ratios could be beneficial for Norway spruce trees to survive periods with limited soil water availability.  相似文献   
234.
Eukaryotic cells critically depend on the correct regulation of intracellular vesicular trafficking to transport biological material. The Rab subfamily of small guanosine triphosphatases controls these processes by acting as a molecular on/off switch. To fulfill their function, active Rab proteins need to localize to intracellular membranes via posttranslationally attached geranylgeranyl lipids. Each member of the manifold Rab family localizes specifically to a distinct membrane, but it is unclear how this specific membrane recruitment is achieved. Here, we demonstrate that Rab-activating guanosine diphosphate/guanosine triphosphate exchange factors (GEFs) display the minimal targeting machinery for recruiting Rabs from the cytosol to the correct membrane using the Rab-GEF pairs Rab5A–Rabex-5, Rab1A-DrrA, and Rab8-Rabin8 as model systems. Specific mistargeting of Rabex-5/DrrA/Rabin8 to mitochondria led to catalytic recruitment of Rab5A/Rab1A/Rab8A in a time-dependent manner that required the catalytic activity of the GEF. Therefore, RabGEFs are major determinants for specific Rab membrane targeting.  相似文献   
235.
236.
A variety of bacterial pathogenicity determinants, including the type VI secretion system and the virulence cassettes from Photorhabdus and Serratia, share an evolutionary origin with contractile-tailed myophages. The well-characterized Escherichia coli phage P2 provides an excellent system for studies related to these systems, as its protein composition appears to represent the “minimal” myophage tail. In this study, we used nuclear magnetic resonance (NMR) spectroscopy to determine the solution structure of gpX, a 68-residue tail baseplate protein. Although the sequence and structure of gpX are similar to those of LysM domains, which are a large family associated with peptidoglycan binding, we did not detect a peptidoglycan-binding activity for gpX. However, bioinformatic analysis revealed that half of all myophages, including all that possess phage T4-like baseplates, encode a tail protein with a LysM-like domain, emphasizing a widespread role for this domain in baseplate function. While phage P2 gpX comprises only a single LysM domain, many myophages display LysM domain fusions with other tail proteins, such as the DNA circulation protein found in Mu-like phages and gp53 of T4-like phages. Electron microscopy of P2 phage particles with an incorporated gpX-maltose binding protein fusion revealed that gpX is located at the top of the baseplate, near the junction of the baseplate and tail tube. gpW, the orthologue of phage T4 gp25, was also found to localize to this region. A general colocalization of LysM-like domains and gpW homologues in diverse phages is supported by our bioinformatic analysis.  相似文献   
237.
The replication and life cycle of the influenza virus is governed by an intricate network of intracellular regulatory events during infection, including interactions with an even more complex system of biochemical interactions of the host cell. Computational modeling and systems biology have been successfully employed to further the understanding of various biological systems, however, computational studies of the complexity of intracellular interactions during influenza infection is lacking. In this work, we present the first large-scale dynamical model of the infection and replication cycle of influenza, as well as some of its interactions with the host’s signaling machinery. Specifically, we focus on and visualize the dynamics of the internalization and endocytosis of the virus, replication and translation of its genomic components, as well as the assembly of progeny virions. Simulations and analyses of the models dynamics qualitatively reproduced numerous biological phenomena discovered in the laboratory. Finally, comparisons of the dynamics of existing and proposed drugs, our results suggest that a drug targeting PB1:PA would be more efficient than existing Amantadin/Rimantaine or Zanamivir/Oseltamivir.  相似文献   
238.
The major light-harvesting complex of Amphidinium (A.) carterae, chlorophyll-a–chlorophyll-c 2–peridinin–protein complex (acpPC), was studied using ultrafast pump-probe spectroscopy at low temperature (60 K). An efficient peridinin–chlorophyll-a energy transfer was observed. The stimulated emission signal monitored in the near-infrared spectral region was stronger when redder part of peridinin pool was excited, indicating that these peridinins have the S1/ICT (intramolecular charge-transfer) state with significant charge-transfer character. This may lead to enhanced energy transfer efficiency from “red” peridinins to chlorophyll-a. Contrary to the water-soluble antenna of A. carterae, peridinin–chlorophyll-a protein, the energy transfer rates in acpPC were slower under low-temperature conditions. This fact underscores the influence of the protein environment on the excited-state dynamics of pigments and/or the specificity of organization of the two pigment–protein complexes.  相似文献   
239.
Growth regulation in adult Atlantic salmon (1.6 kg) was investigated during 45 days in seawater at 13, 15, 17, and 19 °C. We focused on feed intake, nutrient uptake, nutrient utilization, and endocrine regulation through growth hormone (GH), insulin-like growth factors (IGF), and IGF-binding proteins (IGFBP). During prolonged thermal exposure, salmon reduced feed intake and growth. Feed utilization was reduced at 19 °C after 45 days compared with fish at lower temperatures, and body lipid storage was depleted with increasing water temperature. Although plasma IGF-1 concentrations did not change, 32-Da and 43-kDa IGFBP increased in fish reared at ≤17 °C, and dropped in fish reared at 19 °C. Muscle igf1 mRNA levels were reduced at 15 and 45 days in fish reared at 15, 17, and 19 °C. Muscle igf2 mRNA levels did not change after 15 days in response to increasing temperature, but were reduced after 45 days. Although liver igf2 mRNA levels were reduced with increasing temperatures after 15 and 45 days, temperature had no effect on igf1 mRNA levels. The liver igfbp2b mRNA level, which corresponds to circulating 43-kDa IGFBP, exhibited similar responses after 45 days. IGFBP of 23 kDa was only detected in plasma in fish reared at 17 °C, and up-regulation of the corresponding igfbp1b gene indicated a time-dependent catabolic response, which was not observed in fish reared at 19 °C. However, higher muscle ghr mRNA levels were detected in fish at 17 and 19 °C than in fish at lower temperatures, indicating lipolytic regulation in muscle. These results show that the reduction of muscle growth in large salmon is mediated by decreased igf1 and igf2 mRNA levels in addition to GH-associated lipolytic action to cope with prolonged thermal exposure. Accordingly, 13 °C appears to be a more optimal temperature for the growth of adult Atlantic salmon at sea.  相似文献   
240.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号