首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8270篇
  免费   640篇
  国内免费   8篇
  8918篇
  2023年   44篇
  2022年   89篇
  2021年   177篇
  2020年   122篇
  2019年   130篇
  2018年   216篇
  2017年   178篇
  2016年   259篇
  2015年   444篇
  2014年   420篇
  2013年   550篇
  2012年   722篇
  2011年   635篇
  2010年   415篇
  2009年   324篇
  2008年   478篇
  2007年   449篇
  2006年   434篇
  2005年   416篇
  2004年   417篇
  2003年   387篇
  2002年   311篇
  2001年   101篇
  2000年   76篇
  1999年   80篇
  1998年   81篇
  1997年   47篇
  1996年   53篇
  1995年   51篇
  1994年   53篇
  1993年   36篇
  1992年   52篇
  1991年   51篇
  1990年   31篇
  1989年   38篇
  1988年   31篇
  1987年   28篇
  1986年   31篇
  1985年   46篇
  1984年   35篇
  1983年   30篇
  1982年   26篇
  1981年   26篇
  1980年   30篇
  1979年   28篇
  1978年   27篇
  1977年   24篇
  1976年   31篇
  1975年   25篇
  1974年   19篇
排序方式: 共有8918条查询结果,搜索用时 15 毫秒
221.
Linking measures of immune function with infection, and ultimately, host and parasite fitness is a major goal in the field of ecological immunology. In this study, we tested for the presence and timing of a cellular immune response in the crustacean Daphnia magna following exposure to its sterilizing endoparasite Pasteuria ramosa. We found that D. magna possesses two cell types circulating in the haemolymph: a spherical one, which we call a granulocyte and an irregular-shaped amoeboid cell first described by Metchnikoff over 125 years ago. Daphnia magna mounts a strong cellular response (of the amoeboid cells) just a few hours after parasite exposure. We further tested for, and found, considerable genetic variation for the magnitude of this cellular response. These data fostered a heuristic model of resistance in this naturally coevolving host–parasite interaction. Specifically, the strongest cellular responses were found in the most susceptible hosts, indicating resistance is not always borne from a response that destroys invading parasites, but rather stems from mechanisms that prevent their initial entry. Thus, D. magna may have a two-stage defence—a genetically determined barrier to parasite establishment and a cellular response once establishment has begun.  相似文献   
222.
Extracellular ATP is an important signal molecule required to cue plant growth and developmental programs, interactions with other organisms, and responses to environmental stimuli. The molecular targets mediating the physiological effects of extracellular ATP in plants have not yet been identified. We developed a well characterized experimental system that depletes Arabidopsis cell suspension culture extracellular ATP via treatment with the cell death-inducing mycotoxin fumonisin B1. This provided a platform for protein profile comparison between extracellular ATP-depleted cells and fumonisin B1-treated cells replenished with exogenous ATP, thus enabling the identification of proteins regulated by extracellular ATP signaling. Using two-dimensional difference in-gel electrophoresis and matrix-assisted laser desorption-time of flight MS analysis of microsomal membrane and total soluble protein fractions, we identified 26 distinct proteins whose gene expression is controlled by the level of extracellular ATP. An additional 48 proteins that responded to fumonisin B1 were unaffected by extracellular ATP levels, confirming that this mycotoxin has physiological effects on Arabidopsis that are independent of its ability to trigger extracellular ATP depletion. Molecular chaperones, cellular redox control enzymes, glycolytic enzymes, and components of the cellular protein degradation machinery were among the extracellular ATP-responsive proteins. A major category of proteins highly regulated by extracellular ATP were components of ATP metabolism enzymes. We selected one of these, the mitochondrial ATP synthase β-subunit, for further analysis using reverse genetics. Plants in which the gene for this protein was knocked out by insertion of a transfer-DNA sequence became resistant to fumonisin B1-induced cell death. Therefore, in addition to its function in mitochondrial oxidative phosphorylation, our study defines a new role for ATP synthase β-subunit as a pro-cell death protein. More significantly, this protein is a novel target for extracellular ATP in its function as a key negative regulator of plant cell death.  相似文献   
223.
Laboratory evolution studies provide fundamental biological insight through direct observation of the evolution process. They not only enable testing of evolutionary theory and principles, but also have applications to metabolic engineering and human health. Genome‐scale tools are revolutionizing studies of laboratory evolution by providing complete determination of the genetic basis of adaptation and the changes in the organism's gene expression state. Here, we review studies centered on four central themes of laboratory evolution studies: (1) the genetic basis of adaptation; (2) the importance of mutations to genes that encode regulatory hubs; (3) the view of adaptive evolution as an optimization process; and (4) the dynamics with which laboratory populations evolve.  相似文献   
224.

Background  

Lung function is a strong predictor of cardiovascular and all-cause mortality. Previous studies suggest that alcohol exposure may be linked to impaired pulmonary function through oxidant-antioxidant mechanisms. Alcohol may be an important source of oxidants; however, wine contains several antioxidants. In this study we analyzed the relation of beverage specific alcohol intake with forced expiratory volume in one second (FEV1) and forced vital capacity (FVC) in a random sample of 1555 residents of Western New York, USA.  相似文献   
225.
To understand the rules by which axons lay down their synaptic boutons we analyzed the linear bouton distributions in 39 neurons (23 spiny, 13 smooth) and 3 thalamic axons, which were filled intracellularly with horseradish peroxidase (HRP) during in vivo experiments in cat area 17. The variation of the total number of boutons and the total axonal length was large (789–7912 boutons, 12–126 mm). The overall linear bouton density for smooth cells was higher than that of spiny cells and thalamic afferents (mean ± sd, 110 ± 21 and 78 ± 27 boutons per mm of axonal length). The distribution of boutons varied according to their location on the tree. Distal axon collaterals (first and second order segments in Horton-Strahler ordering) of smooth neurons had a 3.5 times higher, spiny cells and thalamic afferents a 2 times higher bouton density compared to the higher order (more proximal) segments. The distribution of interbouton intervals was positively skewed and similar for cells of the same type. In most cases a γ-distribution fitted well, but the distributions had a tendency to have a heavier tail. To a first approximation these bouton distributions are consistent with both diffuse and specific models of interneuronal connections. Quite simple rules can explain these distributions and the connections between the different classes of neurons.  相似文献   
226.
227.
This Letter describes the discovery of a novel series of H3 receptor antagonists. The initial medicinal chemistry strategy focused on deconstructing and simplifying an early screening hit which rapidly led to the discovery of a novel series of H3 receptor antagonists based on the benzazepine core. Employing an H3 driven pharmacodynamic model, the series was then further optimised through to a lead compound that showed robust in vivo functional activity and possessed overall excellent developability properties.  相似文献   
228.
Cystic fibrosis (CF) is a fatal genetic disease caused by mutations in cftr, a gene encoding a PKA-regulated Cl(-) channel. The most common mutation results in a deletion of phenylalanine at position 508 (DeltaF508-CFTR) that impairs protein folding, trafficking, and channel gating in epithelial cells. In the airway, these defects alter salt and fluid transport, leading to chronic infection, inflammation, and loss of lung function. There are no drugs that specifically target mutant CFTR, and optimal treatment of CF may require repair of both the folding and gating defects. Here, we describe two classes of novel, potent small molecules identified from screening compound libraries that restore the function of DeltaF508-CFTR in both recombinant cells and cultures of human bronchial epithelia isolated from CF patients. The first class partially corrects the trafficking defect by facilitating exit from the endoplasmic reticulum and restores DeltaF508-CFTR-mediated Cl(-) transport to more than 10% of that observed in non-CF human bronchial epithelial cultures, a level expected to result in a clinical benefit in CF patients. The second class of compounds potentiates cAMP-mediated gating of DeltaF508-CFTR and achieves single-channel activity similar to wild-type CFTR. The CFTR-activating effects of the two mechanisms are additive and support the rationale of a drug discovery strategy based on rescue of the basic genetic defect responsible for CF.  相似文献   
229.
The aerial parts of Passiflora serratodigitata yielded 5,7-dihydroxy-4-phenylcoumarin, its 7-β-glucoside and the known C-glycosylflavones 2″-xylosylvitexin, 2″-xylosylisovitexin, vitexin, isovitexin, a vicenin, and orientin. The known flavone chrysin was also isolated. This is the first report of neoflavonoids in the family Passifloraceae.  相似文献   
230.
There is considerable debate as to the nature of the primary parasite-derived moieties that activate innate pro-inflammatory responses during malaria infection. Microparticles (MPs), which are produced by numerous cell types following vesiculation of the cellular membrane as a consequence of cell death or immune-activation, exert strong pro-inflammatory activity in other disease states. Here we demonstrate that MPs, derived from the plasma of malaria infected mice, but not naive mice, induce potent activation of macrophages in vitro as measured by CD40 up-regulation and TNF production. In vitro, these MPs induced significantly higher levels of macrophage activation than intact infected red blood cells. Immunofluorescence staining revealed that MPs contained significant amounts of parasite material indicating that they are derived primarily from infected red blood cells rather than platelets or endothelial cells. MP driven macrophage activation was completely abolished in the absence of MyD88 and TLR-4 signalling. Similar levels of immunogenic MPs were produced in WT and in TNF−/−, IFN-γ−/−, IL-12−/− and RAG-1−/− malaria-infected mice, but were not produced in mice injected with LPS, showing that inflammation is not required for the production of MPs during malaria infection. This study therefore establishes parasitized red blood cell-derived MPs as a major inducer of systemic inflammation during malaria infection, raising important questions about their role in severe disease and in the generation of adaptive immune responses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号