首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8259篇
  免费   638篇
  国内免费   8篇
  2023年   39篇
  2022年   81篇
  2021年   177篇
  2020年   122篇
  2019年   130篇
  2018年   216篇
  2017年   178篇
  2016年   259篇
  2015年   444篇
  2014年   420篇
  2013年   550篇
  2012年   722篇
  2011年   635篇
  2010年   415篇
  2009年   324篇
  2008年   478篇
  2007年   449篇
  2006年   434篇
  2005年   416篇
  2004年   417篇
  2003年   387篇
  2002年   311篇
  2001年   101篇
  2000年   76篇
  1999年   80篇
  1998年   81篇
  1997年   47篇
  1996年   53篇
  1995年   51篇
  1994年   53篇
  1993年   36篇
  1992年   52篇
  1991年   51篇
  1990年   31篇
  1989年   38篇
  1988年   31篇
  1987年   28篇
  1986年   31篇
  1985年   46篇
  1984年   35篇
  1983年   30篇
  1982年   26篇
  1981年   26篇
  1980年   30篇
  1979年   28篇
  1978年   27篇
  1977年   24篇
  1976年   31篇
  1975年   25篇
  1974年   19篇
排序方式: 共有8905条查询结果,搜索用时 375 毫秒
191.
192.

Background

Japanese encephalitis (JE) is the leading cause of viral encephalitis across Asia with approximately 70,000 cases a year and 10,000 to 15,000 deaths. Because JE incidence varies widely over time, partly due to inter-annual climate variability effects on mosquito vector abundance, it becomes more complex to assess the effects of a vaccination programme since more or less climatically favourable years could also contribute to a change in incidence post-vaccination. Therefore, the objective of this study was to quantify vaccination effect on confirmed Japanese encephalitis (JE) cases in Sarawak, Malaysia after controlling for climate variability to better understand temporal dynamics of JE virus transmission and control.

Methodology/principal findings

Monthly data on serologically confirmed JE cases were acquired from Sibu Hospital in Sarawak from 1997 to 2006. JE vaccine coverage (non-vaccine years vs. vaccine years) and meteorological predictor variables, including temperature, rainfall and the Southern Oscillation index (SOI) were tested for their association with JE cases using Poisson time series analysis and controlling for seasonality and long-term trend. Over the 10-years surveillance period, 133 confirmed JE cases were identified. There was an estimated 61% reduction in JE risk after the introduction of vaccination, when no account is taken of the effects of climate. This reduction is only approximately 45% when the effects of inter-annual variability in climate are controlled for in the model. The Poisson model indicated that rainfall (lag 1-month), minimum temperature (lag 6-months) and SOI (lag 6-months) were positively associated with JE cases.

Conclusions/significance

This study provides the first improved estimate of JE reduction through vaccination by taking account of climate inter-annual variability. Our analysis confirms that vaccination has substantially reduced JE risk in Sarawak but this benefit may be overestimated if climate effects are ignored.  相似文献   
193.
Although mitochondria are usually considered as supporters of life, they are also involved in cellular death. Mitochondrial outer membrane permeabilization (MOMP) is a crucial event during apoptosis because it causes the release of proapoptotic factors from the mitochondrial intermembrane space to the cytosol. MOMP is mainly controlled by the Bcl-2 family of proteins, which consists of both proapoptotic and antiapoptotic members. We discuss the current understanding of how activating and inhibitory interactions within this family lead to the activation and oligomerization of MOMP effectors Bax and Bak, which result in membrane permeabilization. The order of events leading to MOMP is then highlighted step by step, emphasizing recent discoveries regarding the formation of Bax/Bak pores on the outer mitochondrial membrane. Besides the Bcl-2 proteins, the mitochondrial organelle contributes to and possibly regulates MOMP, because mitochondrial resident proteins and membrane lipids are prominently involved in the process.Mitochondria are essential for the life of the cell. They produce most of the ATP via oxidative phosphorylation thanks to the respiratory chain that is embedded in the inner mitochondrial membrane. Consequently, mitochondrial dysfunction is implicated in the development of many human diseases, in particular, neurodegenerative disorders (Lin and Beal 2006). Mitochondria are also prominently involved in cell death, because they play a crucial role in many apoptotic responses. Apoptosis is a self-destruction program that is essential during the development of multicellular organisms. Its dysregulation has also been recognized as a main feature of many pathological conditions, especially cancer (Llambi and Green 2011).The executioners of apoptosis are a family of cysteine proteases termed caspases that cleave a variety of cellular targets, resulting in morphological changes, degradation of genomic DNA, and, ultimately, phagocytic removal of the apoptotic cell (Taylor et al. 2008). Caspases are synthesized as inactive zymogens that become activated after regulated limited proteolysis. Two different pathways of apoptotic signaling that result in the activation of executioner caspases 3 and 7 can be distinguished. In the extrinsic pathway, binding of ligands such as FasL or TNFα to a death receptor on the plasma membrane leads to the activation of initiator caspase 8. Active caspase 8 propagates the signal by directly cleaving and thereby activating caspases 3 and 7, which continue a proteolytic cascade ultimately leading to the removal of the cell.The intrinsic pathway, on the other hand, is initiated upon exposure to a number of stress situations, including DNA damage. A subclass of the Bcl-2 protein family termed BH3-only proteins (see below) becomes activated after an internal stress stimulus and translocates to the outer mitochondrial membrane (OMM), where they orchestrate a process called mitochondrial outer membrane permeabilization (MOMP). As an outcome of this process, pores are formed in the OMM, membrane integrity is lost, and contents of the intermembrane space gain access to the cytosol. One of the molecules that is rapidly released to the cytosol is cytochrome c, which is normally a soluble electron carrier between respiratory complexes III and IV. Together with the proapoptotic cytosolic factor APAF1, cytochrome c assembles into a caspase-activating complex termed the “apoptosome.” This complex subsequently activates caspase 9, which is able to cleave caspases 3 and 7, proceeding with the same downstream cascade as in the extrinsic pathway. Other intermembrane space proteins also contribute to cell death after being released into the cytosol (e.g., SMAC/Diablo, which blocks the caspase inhibitor protein XIAP).Remarkably, the two pathways are not completely independent. Cross talk between the extrinsic and intrinsic pathways exists because of caspase 8-dependent cleavage of the BH3-only protein Bid. Upon cleavage, Bid becomes activated, and the truncated version, tBid, translocates to the surface of mitochondria to induce MOMP. In so-called type II cells, this mitochondrial feedback loop is needed to induce apoptosis through the extrinsic pathway, because of the requirement of XIAP antagonism by SMAC.The loss of OMM integrity caused by MOMP is usually considered the point of no return in the whole process, because cells are committed to die once MOMP is initiated. Therefore, this process represents a major checkpoint of apoptosis and must be tightly controlled to ensure that it is initiated at the right time and place. The main molecular players of MOMP belong to the Bcl-2 protein family. Integration of proapoptotic and antiapoptotic signals by the network of Bcl-2 proteins determines whether or not the OMM is permeabilized. In the following sections, we describe in detail the stimulatory and inhibitory protein–protein interactions within this family, discussing various models of how the MOMP effectors, Bax and Bak, become activated. Furthermore, we focus on the actual event of membrane permeabilization, summarizing the current understanding of how pores are formed in the OMM by Bax and Bak oligomers.  相似文献   
194.
Madagascar has 59 described species of Coffea, of which 42 are listed as critically endangered, endangered, or vulnerable by the criteria of the Red List Category system of the World Conservation Union (IUCN). The littoral forest of Madagascar is a distinctive type of humid evergreen forest restricted to unconsolidated sand located within a few kilometers of the Indian Ocean, now persisting only as small fragments with ca. 10 % of its original range remaining. In an attempt to understand the genetic diversity of Madagascan coffee species, we studied ex situ and in situ populations of Coffea commersoniana, an endemic species of the littoral forests of southeastern Madagascar and soon to be impacted by mining activities in that region. The in situ populations studied showed higher genetic diversity than the ex situ population. The genetic partitioning among the two in situ populations of C. commersoniana was high enough to necessitate keeping the two populations separate for restoration purposes. Based on these findings, recommendations for conservation management (in situ and ex situ) are made.  相似文献   
195.
The response to tissue damage is a complex process, which involves the coordinated regulation of multiple proteins to ensure tissue repair. In order to investigate the effect of tissue damage in a lower vertebrate, samples were taken from rainbow trout (Oncorhynchus mykiss) at day 7 after damage and proteins were separated using 2DE. The experimental design included two groups of rainbow trout, which were fed organic feed either with or without astaxanthin. In total, 96 proteins were found to be affected by tissue damage, clearly demonstrating in this lower vertebrate the complexity and magnitude of the cellular response, in the context of a regenerative process. Using a bioinformatics approach, the main biological function of these proteins were assigned, showing the regulation of proteins involved in processes such as apoptosis, iron homeostasis, and regulation of muscular structure. Interestingly, it was established that exclusively within the astaxanthin feed group, three members of the annexin protein family (annexin IV, V, and VI) were regulated in response to tissue damage.  相似文献   
196.
The genus Multifurca is recorded for the first time from Australia. Multifurca stenophylla (Berk.) T.Lebel, C.W.Dunk & T.W.May comb. nov. is described and illustrated, and a lectotype and epitype designated. The species is characterized by the association with Nothofagus and Eucalyptus, the pale yellow, concentrically zoned pileus, abundant acrid white latex which becomes pale yellow then eventually greenish, and the small basidiospores.  相似文献   
197.
198.
Despite its century-old use, the interpretation of local field potentials (LFPs), the low-frequency part of electrical signals recorded in the brain, is still debated. In cortex the LFP appears to mainly stem from transmembrane neuronal currents following synaptic input, and obvious questions regarding the ‘locality’ of the LFP are: What is the size of the signal-generating region, i.e., the spatial reach, around a recording contact? How far does the LFP signal extend outside a synaptically activated neuronal population? And how do the answers depend on the temporal frequency of the LFP signal? Experimental inquiries have given conflicting results, and we here pursue a modeling approach based on a well-established biophysical forward-modeling scheme incorporating detailed reconstructed neuronal morphologies in precise calculations of population LFPs including thousands of neurons. The two key factors determining the frequency dependence of LFP are the spatial decay of the single-neuron LFP contribution and the conversion of synaptic input correlations into correlations between single-neuron LFP contributions. Both factors are seen to give low-pass filtering of the LFP signal power. For uncorrelated input only the first factor is relevant, and here a modest reduction (<50%) in the spatial reach is observed for higher frequencies (>100 Hz) compared to the near-DC () value of about . Much larger frequency-dependent effects are seen when populations of pyramidal neurons receive correlated and spatially asymmetric inputs: the low-frequency () LFP power can here be an order of magnitude or more larger than at 60 Hz. Moreover, the low-frequency LFP components have larger spatial reach and extend further outside the active population than high-frequency components. Further, the spatial LFP profiles for such populations typically span the full vertical extent of the dendrites of neurons in the population. Our numerical findings are backed up by an intuitive simplified model for the generation of population LFP.  相似文献   
199.
The Notch signaling pathway controls a large number of processes during animal development and adult homeostasis. One of the conserved post-translational modifications of the Notch receptors is the addition of an O-linked glucose to epidermal growth factor-like (EGF) repeats with a C-X-S-X-(P/A)-C motif by Protein O-glucosyltransferase 1 (POGLUT1; Rumi in Drosophila). Genetic experiments in flies and mice, and in vivo structure-function analysis in flies indicate that O-glucose residues promote Notch signaling. The O-glucose residues on mammalian Notch1 and Notch2 proteins are efficiently extended by the addition of one or two xylose residues through the function of specific mammalian xylosyltransferases. However, the contribution of xylosylation to Notch signaling is not known. Here, we identify the Drosophila enzyme Shams responsible for the addition of xylose to O-glucose on EGF repeats. Surprisingly, loss- and gain-of-function experiments strongly suggest that xylose negatively regulates Notch signaling, opposite to the role played by glucose residues. Mass spectrometric analysis of Drosophila Notch indicates that addition of xylose to O-glucosylated Notch EGF repeats is limited to EGF14–20. A Notch transgene with mutations in the O-glucosylation sites of Notch EGF16–20 recapitulates the shams loss-of-function phenotypes, and suppresses the phenotypes caused by the overexpression of human xylosyltransferases. Antibody staining in animals with decreased Notch xylosylation indicates that xylose residues on EGF16–20 negatively regulate the surface expression of the Notch receptor. Our studies uncover a specific role for xylose in the regulation of the Drosophila Notch signaling, and suggest a previously unrecognized regulatory role for EGF16–20 of Notch.  相似文献   
200.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号