首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   2篇
  73篇
  2023年   1篇
  2022年   3篇
  2021年   2篇
  2019年   2篇
  2017年   1篇
  2016年   3篇
  2015年   3篇
  2014年   5篇
  2013年   3篇
  2012年   7篇
  2011年   7篇
  2010年   1篇
  2009年   5篇
  2008年   6篇
  2007年   2篇
  2006年   10篇
  2005年   3篇
  2004年   1篇
  2003年   3篇
  2002年   3篇
  1998年   1篇
  1988年   1篇
排序方式: 共有73条查询结果,搜索用时 9 毫秒
61.
hRad51 binding to ssDNA is significantly lowered in the presence of a nucleotide cofactor ATP/ADP/ATPgammaS. In these conditions, presence of trace amounts of hRad52 protein restores hRad51 binding to DNA. In the absence of any nucleotide cofactor where intrinsic binding of hRad51 to ssDNA is higher, hRad52 brings about no improved binding. hRad51 binding to ssDNA is strongly influenced by the DNA sequence. The protein binding to repeat sequences is poor compared to that of mixed DNA sequence. Interestingly, presence of hRad52 restores the ability of hRad51 binding to such DNA targets as well. Moreover, all the cooperative effects of hRad52 on hRad51 binding are highly specific to the latter's binding to ssDNA and not to dsDNA. These results help us to model important mechanistic steps of hRad51 presynapsis on ssDNA templates.  相似文献   
62.
Navadgi VM  Dutta A  Rao BJ 《Biochemistry》2003,42(51):15237-15251
Human Rad52 protein, by analogy with the genetics of yeast Rad52, is believed to mediate a pathway of homologous recombination even independent of Rad51. Current study is focused on unraveling the molecular properties of hRad52 that endow the protein such an ability. We show here that the hRad52 protein binds single-stranded DNA (ssDNA) as well as 3'- and 5'-tailed duplexes severalfold better than blunt-ended duplexes, altering the sensitivity of the bound DNA to the action of DNase I. Protein binding is sensitive to the length of the ssDNA: targets as short as a 33mer poorly bind the protein, whereas that of a 61mer and above bind the protein stably well. Such stable ssDNA-hRad52 complexes are highly competent in mediating not only the annealing of two complementary strands but also three-stranded pairing. The latter involves homologous recognition of linear duplex DNA by the ssDNA-hRad52 complex. We show that the hRad52 protein facilitates homologous recognition between ssDNA and duplex-DNA through a process that involves unwinding or transient unpairing of the interacting duplex via a novel three-stranded intermediate that does not lead to strand exchange. The results enable us to visualize a novel role for hRad52 that may model its function in a pathway requiring no hRad51.  相似文献   
63.
Argonaute (AGO) proteins interact with small RNAs to mediate gene silencing. C. elegans contains 27 AGO genes, raising the question of what roles these genes play in RNAi and related gene-silencing pathways. Here we describe 31 deletion alleles representing all of the previously uncharacterized AGO genes. Analysis of single- and multiple-AGO mutant strains reveals functions in several pathways, including (1) chromosome segregation, (2) fertility, and (3) at least two separate steps in the RNAi pathway. We show that RDE-1 interacts with trigger-derived sense and antisense RNAs to initiate RNAi, while several other AGO proteins interact with amplified siRNAs to mediate downstream silencing. Overexpression of downstream AGOs enhances silencing, suggesting that these proteins are limiting for RNAi. Interestingly, these AGO proteins lack key residues required for mRNA cleavage. Our findings support a two-step model for RNAi, in which functionally and structurally distinct AGOs act sequentially to direct gene silencing.  相似文献   
64.
TPM1κ is an alternatively spliced isoform of the TPM1 gene whose specific role in cardiac development and disease is yet to be elucidated. Although mRNA studies have shown TPM1κ expression in axolotl heart and skeletal muscle, it has not been quantified. Also the presence of TPM1κ protein in axolotl heart and skeletal muscle has not been demonstrated. In this study, we quantified TPM1κ mRNA expression in axolotl heart and skeletal muscle. Using a newly developed TPM1κ specific antibody, we demonstrated the expression and incorporation of TPM1κ protein in myofibrils of axolotl heart and skeletal muscle. The results support the potential role of TPM1κ in myofibrillogenesis and sarcomeric function. J. Cell. Biochem. 110: 875–881, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
65.
66.
Hydrolysis of plant seed gums by microwave irradiation   总被引:5,自引:0,他引:5  
Under microwave irradiation (MW), the seed gums, guar and Ipomoea quamoclit were hydrolyzed to constituent monosaccharides and oligosaccharides in very mild conditions and short reaction time. Under MW both the seed gums could be completely hydrolyzed using very dilute acid (0.00625N H2SO4) within two minutes. Hydrolysis occurs in 2 min and 20 s even in absence of acid under the MW irradiation. Thus hydrolytic fragmentation under MW provides an efficient tool in structural elucidation of polysaccharides.  相似文献   
67.
68.
The Notch signaling pathway controls patterning and cell fate decisions during development in metazoans, and is associated with human diseases such as cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) and certain cancers. Studies over the last several years have revealed sophisticated regulation of both the membrane-bound Notch receptor and its ligands by vesicle trafficking. This is perhaps most evident in neural progenitor cells in Drosophila, which divide asymmetrically to segregate Numb, an endocytic adaptor protein that acts as a Notch pathway inhibitor, to one daughter cell. Here, we discuss recent findings addressing how receptor and ligand trafficking to specific membrane compartments control activation of the Notch pathway in asymmetrically dividing cells and other tissues.  相似文献   
69.
One of the most prominent drug targets for the treatment of Alzheimer disease is gamma-secretase, a multi-protein complex responsible for the generation of the amyloid-beta peptide. The catalytic core of the complex lies on presenilin, a multi-spanning membrane protease, the activity of which depends on two aspartate residues located in transmembrane domains 6 and 7. We have recently shown by cysteine-scanning mutagenesis that these aspartates are facing a water-filled cavity in the lipid bilayer, demonstrating how proteolytic cleavage of the substrates can be taking place within the membrane. Here, we demonstrate that transmembrane domain 9 and hydrophobic domain VII in the large cytoplasmic loop of presenilin are dynamic structural parts of this cavity. Hydrophobic domain VII is associated with transmembrane domain 7 in the membrane, probably facilitating the entrance of water molecules in the catalytic site. Transmembrane domain 9, on the other hand, exhibits a highly flexible structure, potentially involved in the transport of substrates to the catalytic site, as well as in the binding of gamma-secretase inhibitors. The conserved proline-alanine-leucine motif at the cytoplasmic part of this domain is extremely close to the catalytic Asp257 and is crucial for conformational changes leading to the activation of the catalytic site. We, also, identify a unique mutant in this domain (I437C) that specifically blocks amyloid-beta peptide production without affecting the processing of the physiologically indispensable Notch substrate. Our data are finally combined to propose a model for the architectural organization and activation of the catalytic site of presenilin.  相似文献   
70.
Pseudomonas putida CSV86, a plasmid-free strain possessing capability to transfer the naphthalene degradation property, has been explored for its metabolic diversity through genome sequencing. The analysis of draft genome sequence of CSV86 (6.4 Mb) revealed the presence of genes involved in the degradation of naphthalene, salicylate, benzoate, benzylalcohol, p-hydroxybenzoate, phenylacetate and p-hydroxyphenylacetate on the chromosome thus ensuring the stability of the catabolic potential. Moreover, genes involved in the metabolism of phenylpropanoid and homogentisate, as well as heavy metal resistance, were additionally identified. Ability to grow on vanillin, veratraldehyde and ferulic acid, detection of inducible homogentisate dioxygenase and growth on aromatic compounds in the presence of heavy metals like copper, cadmium, cobalt and arsenic confirm in silico observations reflecting the metabolic versatility. In silico analysis revealed the arrangement of genes in the order: tRNAGly, integrase followed by nah operon, supporting earlier hypothesis of existence of a genomic island (GI) for naphthalene degradation. Deciphering the genomic architecture of CSV86 for aromatic degradation pathways and identification of elements responsible for horizontal gene transfer (HGT) suggests that genetic bioaugmentation strategies could be planned using CSV86 for effective bioremediation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号